10 examples of 'javascript divide without remainder' in JavaScript

Every line of 'javascript divide without remainder' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your JavaScript code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
this disclaimer
15export function my_mod(dividend, divisor) {
16 return (dividend % divisor + divisor) % divisor
17}
Important

Use secure code every time

Secure your code as it's written. Use Snyk Code to scan source code in minutes – no build needed – and fix issues immediately. Enable Snyk Code

10function mod(dividend, divisor) {
11 return (dividend % divisor + divisor) % divisor;
12}
22mod(div) {
23 let result = 0;
24 for (let i = this._buffer.length - 1; i >= 0; i--) {
25 result *= (256 % div);
26 result %= div;
27 result += (this._buffer[i] % div);
28 result %= div;
29 }
30 return result;
31}
50function div(a, b, is_mod) {
51 var n = a.length, m = b.length, i, j, d, tmp, qq, rr, c = Array();
52 d = Math.floor(0x10000 / (b[m - 1] + 1));
53 a = mul(a, [d]);
54 b = mul(b, [d]);
55 for (j = n - m; j >= 0; j--) {
56 tmp = a[j + m] * 0x10000 + a[j + m - 1];
57 rr = tmp % b[m - 1];
58 qq = Math.round((tmp - rr) / b[m - 1]);
59 if (qq == 0x10000 || (m > 1 && qq * b[m - 2] > 0x10000 * rr + a[j + m - 2])) {
60 qq--;
61 rr += b[m - 1];
62 if (rr < 0x10000 && qq * b[m - 2] > 0x10000 * rr + a[j + m - 2]) qq--;
63 }
64 for (i = 0; i < m; i++) {
65 tmp = i + j;
66 a[tmp] -= b[i] * qq;
67 a[tmp + 1] += Math.floor(a[tmp] / 0x10000);
68 a[tmp] &= 0xffff;
69 }
70 c[j] = qq;
71 if (a[tmp + 1] < 0) {
72 c[j]--;
73 for (i = 0; i < m; i++) {
74 tmp = i + j;
75 a[tmp] += b[i];
76 if (a[tmp] > 0xffff) {
77 a[tmp + 1]++;
78 a[tmp] &= 0xffff;
79 }
80 }
81 }
82 }
83 if (!is_mod) return c;
84 b = Array();
85 for (i = 0; i < m; i++) b[i] = a[i];
86 return div(b, [d]);
87}
31function subtract(div) {
32 var v = Math.floor( seconds / div );
33 seconds %= div;
34
35 return v;
36}
138function divide (n, m) { return n / m }
160async function pyDivide(numerator, denominator) {
161 try {
162 await python`${numerator} / ${denominator}`;
163 } catch (e) {
164 if (isPythonException('ZeroDivisionError', e)) {
165 return Infinity;
166 }
167 throw e;
168 }
169}
133function div (a, b) {
134 // This function is used in a variety of contexts so it is special in
135 // that it doesn't get type annotations even though it's a numerical
136 // function.
137 return a / b >> 0;
138 }
8export function mod(value: number, divisor: number): number {
9 const modulus = value % divisor;
10 return modulus < 0 ? divisor + modulus : modulus;
11}
231function divide(a, b) {
232 return a / b;
233}

Related snippets