Every line of 'accuracy sklearn' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
52 def test_accuracy(clf, X_test, y_test): 53 X_test = np.array([item for sublist in X_test for item in sublist]) 54 y_test = np.array([item for sublist in y_test for item in sublist]) 55 return clf.score(X_test, y_test)
7 def accuracy(params): 8 clf = RandomForestClassifier(**params) 9 clf.fit(x_train,y_train) 10 return clf.score(x_test, y_test)
114 def accuracy(y_test, y_pred): 115 """Computes the accuracy score. 116 117 Args: 118 y_test: np.array 1-D array of true class labels 119 y_pred: np.array 1-D array of predicted class labels 120 121 Returns: 122 accuracy: float 123 accuracy score 124 """ 125 return metrics.accuracy_score(y_test, y_pred)
26 def accuracy_score(self, x_test, y_test): 27 estimation = self.model.predict(x_test) 28 return acc_func(estimation,y_test)
425 @torch.no_grad() 426 def compute_accuracy_classifier(clf, data_train, labels_train, data_test, labels_test): 427 clf.fit(data_train, labels_train) 428 # Predicting the labels 429 y_pred_test = clf.predict(data_test) 430 y_pred_train = clf.predict(data_train) 431 432 return ( 433 ( 434 compute_accuracy_tuple(labels_train, y_pred_train), 435 compute_accuracy_tuple(labels_test, y_pred_test), 436 ), 437 y_pred_test, 438 )
29 def testAccuracy(data_test, label_test, kNN): 30 return kNN.score(data_test, label_test)
52 def get_accuracy(self, x_test, y_test, keep_prob=1.0): 53 return self.sess.run(self.accuracy, feed_dict={self.X: x_test, self.Y: y_test, self.keep_prob: keep_prob})
29 @unhot 30 def accuracy(actual, predicted): 31 return 1.0 - classification_error(actual, predicted)