Every line of 'add empty columns to dataframe pandas' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
38 def fill_empty(df: pd.DataFrame) -> pd.DataFrame: 39 """Fill the gaps in the 'original' column with values from 'index' 40 Args: 41 df: 42 Returns: 43 """ 44 index = df["original"].isnull() 45 df.loc[index, "original"] = df.loc[index, "index"] 46 47 return df
29 def _concat(df, type): 30 if df is None: 31 df = pd.DataFrame(_object_blocks[type]) 32 else: 33 _df = pd.DataFrame(_object_blocks[type]) 34 df = pd.concat([df, _df], sort=True) 35 return df
39 def _drop_col(self, df): 40 ''' 41 Drops last column, which was added in the parsing procedure due to a 42 trailing white space for each sample in the text file 43 Arguments: 44 df: pandas dataframe 45 Return: 46 df: original df with last column dropped 47 ''' 48 return df.drop(df.columns[-1], axis=1)
206 def to_pandas(self): 207 return self.dataframe
80 def _clean_columns(df, keep_colnames): 81 new_colnames = [] 82 for i,colname in enumerate(df.columns): 83 if colname not in keep_colnames: 84 new_colnames.append(i) 85 else: 86 new_colnames.append(colname) 87 return new_colnames
673 def _unique(df, columns=None): 674 if isinstance(columns, str): 675 columns = [columns] 676 if not columns: 677 columns = df.columns.tolist() 678 info = {} 679 for col in columns: 680 values = df[col].dropna().values 681 uniques = np.unique(list(_flatten_list(values))).tolist() 682 info[col] = {'count': len(uniques), 'values': uniques} 683 return info