9 examples of 'add gaussian noise to image python' in Python

Every line of 'add gaussian noise to image python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
176def __call__(self, image):
177 if isinstance(self.sigma, collections.Sequence):
178 sigma = random_num_generator(
179 self.sigma, random_state=self.random_state)
180 else:
181 sigma = self.sigma
182 if isinstance(self.mean, collections.Sequence, random_state=self.random_state):
183 mean = random_num_generator(self.mean)
184 else:
185 mean = self.mean
186 row, col, ch = image.shape
187 gauss = self.random_state.normal(mean, sigma, (row, col, ch))
188 gauss = gauss.reshape(row, col, ch)
189 image += gauss
190 return image
26def addGaussianNoise(src):
27 row,col,ch= src.shape
28 mean = 0
29 var = 0.1
30 sigma = 15
31 gauss = np.random.normal(mean,sigma,(row,col,ch))
32 gauss = gauss.reshape(row,col,ch)
33 noisy = src + gauss
34
35 return noisy
305def noiseImage(n1,n2):
306 r = Random(3)
307 x = sub(randfloat(r,n1,n2),0.5)
308 rgf = RecursiveGaussianFilter(2.0)
309 for x2 in x:
310 rgf.apply1(x2,x2)
311 return x
176def AddGauss(img, level):
177 return cv2.blur(img, (level * 2 + 1, level * 2 + 1));
29def compute_scaled_noise(self, noise, background_noise):
30 """Compute a scaled noise map from the baseline noise map. This scales each galaxy component individually \
31 using their galaxy contribution map and sums their scaled noise maps with the baseline and background noise maps.
32
33 Parameters
34 -----------
35 noise : ndarray
36 The noise before scaling (electrons per second)..
37 background_noise : ndarray
38 The background noise values (electrons per second)..
39 """
40 return noise + (self.background_noise_scale * background_noise)
138def _add_noise(self, img):
139 """Adds Gaussian or Poisson noise to image."""
140
141 w, h = img.size
142 c = len(img.getbands())
143
144 # Poisson distribution
145 if self.noise_type == 'poisson':
146 noise = np.random.poisson(self.noise_param, (h, w, c))
147
148 # Normal distribution (default)
149 else:
150 std = np.random.uniform(0, self.noise_param)
151 noise = np.random.normal(0, std, (h, w, c))
152
153 # Add noise and clip
154 noise_img = np.array(img) + noise
155 noise_img = np.clip(noise_img, 0, 255).astype(np.uint8)
156
157 return Image.fromarray(noise_img)
87def rand_noise(img):
88 img_noisy = img + np.random.normal(scale=noise, size=img.shape)
89 return img_noisy
85def remove_background_gauss(img, min_sigma=3, max_sigma=30, threshold=1):
86 """Remove background from an image using a difference of gaussian approach
87
88 img: ndarray
89 Image array
90 min_sigma: float, optional
91 The minimum standard deviation for the gaussian filter
92 max_sigma: float, optional
93 The maximum standard deviation for the gaussian filter
94 threshold: float, optional
95 Remove any remaining features below this threshold
96
97 Returns img: ndarray
98 Image array with background removed
99 """
100 img_float = img.astype(float)
101 img_corr = np.maximum(ndimage.gaussian_filter(img_float, min_sigma) - ndimage.gaussian_filter(img_float, max_sigma) - threshold, 0)
102 return img_corr.astype(int)
86def filter(image):
87 image_ = clean_image.convert_to_greyscale(image)
88 image_ = clean_image.clean_noise(image_, 3)
89 return image_

Related snippets