Every line of 'binary cross entropy keras' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
52 def cross_entropy(self, y): 53 return T.nnet.categorical_crossentropy(self.p_y_given_x, y)
12 def weighted_binary_cross_entropy(targets, predictions, class_weights): 13 14 predictions = tf.clip_by_value(predictions,1e-7,1-1e-7) 15 return tf.reduce_mean(class_weights*(targets*tf.log(predictions) + (1-targets)*tf.log(1-predictions)), axis=get_reduce_axis(targets))
298 def _cross_entropy(self, x, labels): 299 x = tf.reshape(x, [-1, self.num_classes]) 300 cross_entropy = -tf.reduce_sum( 301 (labels * tf.math.log(tf.clip_by_value(x, 1e-10, 1.0))), 302 axis=[1] 303 ) 304 cross_entropy_mean = tf.reduce_mean(cross_entropy, name="cross_entropy_mean") 305 306 return cross_entropy_mean
113 def cross_entropy(self, y): 114 if self.mini_batch: 115 return T.mean(T.sum(T.nnet.categorical_crossentropy(self.y_t, y), axis=1)) # naive batch-normalization 116 else: 117 return T.sum(T.nnet.categorical_crossentropy(self.y_t, y))
123 def binary_crossentropy(predictions, targets): 124 """Computes the binary cross-entropy between predictions and targets. 125 126 .. math:: L = -t \\log(p) - (1 - t) \\log(1 - p) 127 128 Parameters 129 ---------- 130 predictions : Theano tensor 131 Predictions in (0, 1), such as sigmoidal output of a neural network. 132 targets : Theano tensor 133 Targets in [0, 1], such as ground truth labels. 134 135 Returns 136 ------- 137 Theano tensor 138 An expression for the element-wise binary cross-entropy. 139 140 Notes 141 ----- 142 This is the loss function of choice for binary classification problems 143 and sigmoid output units. 144 """ 145 predictions, targets = align_targets(predictions, targets) 146 return theano.tensor.nnet.binary_crossentropy(predictions, targets)
22 def cross_entropy(self, y_true, y_pred): 23 y_pred = K.maximum(K.minimum(y_pred, 1 - 1e-15), 1e-15) 24 cross_entropy_loss = - K.sum(y_true * K.log(y_pred), axis=-1) 25 return cross_entropy_loss
7 def WeightedBinaryCrossEntropy(x_true, eps): 8 def WeightedBinaryCrossEntropy_(y_true, y_pred): 9 err = -((y_true*K.log(y_pred)) + ((1-y_true)*K.log(1-y_pred))) 10 11 probs = K.mean(x_true,axis=(1,2,3),keepdims=True) 12 weights_pos, weights_neg = 1./(probs+eps), 1./((1-probs)+eps) 13 weights = (x_true*weights_pos) + ((1-x_true)*weights_neg) 14 15 return K.mean(err*weights) 16 17 return WeightedBinaryCrossEntropy_
17 def cross_entropy(logit, prob): 18 return K.sum(prob * K.tf.nn.log_softmax(logit), axis = 1)
32 def cross_entropy_loss(y, yhat): 33 """ 34 Compute the cross entropy loss in tensorflow. 35 36 y is a one-hot tensor of shape (n_samples, n_classes) and yhat is a tensor 37 of shape (n_samples, n_classes). y should be of dtype tf.int32, and yhat should 38 be of dtype tf.float32. 39 40 The functions tf.to_float, tf.reduce_sum, and tf.log might prove useful. (Many 41 solutions are possible, so you may not need to use all of these functions). 42 43 Note: You are NOT allowed to use the tensorflow built-in cross-entropy 44 functions. 45 46 Args: 47 y: tf.Tensor with shape (n_samples, n_classes). One-hot encoded. 48 yhat: tf.Tensorwith shape (n_sample, n_classes). Each row encodes a 49 probability distribution and should sum to 1. 50 Returns: 51 out: tf.Tensor with shape (1,) (Scalar output). You need to construct this 52 tensor in the problem. 53 """ 54 ### YOUR CODE HERE 55 out = tf.reduce_sum(-tf.to_float(y) * tf.log(yhat)) 56 ### END YOUR CODE 57 return out
60 def batch_crossentropy(label, logits): 61 """Calculates the cross-entropy for a batch of logits. 62 63 Parameters 64 ---------- 65 logits : array_like 66 The logits predicted by the model for a batch of inputs. 67 label : int 68 The label describing the target distribution. 69 70 Returns 71 ------- 72 np.ndarray 73 The cross-entropy between softmax(logits[i]) and onehot(label) 74 for all i. 75 76 """ 77 78 assert logits.ndim == 2 79 80 # for numerical reasons we subtract the max logit 81 # (mathematically it doesn't matter!) 82 # otherwise exp(logits) might become too large or too small 83 logits = logits - np.max(logits, axis=1, keepdims=True) 84 e = np.exp(logits) 85 s = np.sum(e, axis=1) 86 ces = np.log(s) - logits[:, label] 87 return ces