Every line of 'bins in histogram python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
3 def bin(X, binsize = 1): 4 """Split X into bins and return the average of each bin as a new set of 5 measurements.""" 6 if binsize == 1: 7 return X; 8 else: 9 extra = 0 if pl.size(X, axis = 0) % binsize == 0 else 1 10 dims = [i for i in pl.shape(X)] 11 dims[0] = dims[0] / binsize + extra 12 dims = tuple(dims) 13 X_binned = pl.zeros(dims) 14 15 for i in xrange(pl.size(X_binned, axis = 0)): 16 X_binned[i] = pl.mean(X[i * binsize:(i + 1) * binsize], axis = 0) 17 18 return X_binned
160 def bin(X, nbins=20): 161 equa0 = (X <= 0.0) 162 equa1 = (X >= 1.0) 163 164 binned = [] 165 166 groups = range(nbins+1) 167 for g1, g2 in zip(groups, groups[1:]): 168 l, u = g1/float(nbins), g2/float(nbins) 169 binned.append((l < X) & (X <= u)) 170 retval = np.concatenate([equa0, equa1] + binned, axis=1) 171 return retval
9 def py_histogram(int_vec): 10 11 hist = {} 12 for val in int_vec: 13 hist[val] = 1 + hist.get(val, 0) 14 15 return hist
4 def histogramValues(values): 5 counts, binEdges = histogram(values, bins=40, density=True) 6 ys = list(counts) 7 xs = [] 8 for i in range(len(binEdges) - 1): 9 xs.append((binEdges[i] + binEdges[i + 1]) / 2) 10 return xs, ys
107 def bins(self): 108 raise NotImplementedError("bins is not implemented")
48 def plot_histogram(values, num_bins=100): 49 """ 50 Generates a plot of the histograms of grasps by probability of force closure 51 """ 52 bin_edges = np.linspace(np.min(values), np.max(values), num_bins+1) 53 plt.figure() 54 n, bins, patches = plt.hist(values, bin_edges)
23 def calculate_histogram(data, bins: int, signal: str): 24 stats = data.statistics['signals'][signal] 25 maximum, minimum = stats['max']['value'], stats['min']['value'] 26 width = 3.5 * np.sqrt(stats['σ2']['value']) / (data.sample_count ** (1. / 3)) 27 num_bins = bins if bins > 0 else ceil((maximum - minimum) / width) 28 hist = None 29 bin_edges = None 30 31 for data_chunk in data: 32 if bin_edges is None: 33 hist, bin_edges = np.histogram(data_chunk['signals'][signal]['value'], 34 range=(minimum, maximum), bins=num_bins) 35 else: 36 hist += np.histogram(data_chunk['signals'][signal]['value'], bins=bin_edges)[0] 37 38 return hist, bin_edges
127 def fast_hist(a, b, n): 128 k = (a >= 0) & (a < n) 129 return np.bincount(n * a[k].astype(int) + b[k], minlength=n**2).reshape(n, n)
84 def hist(data, title='histogram', bins=10, **args): 85 histFig = pyecharts.charts.Bar() 86 histFig.set_global_opts(title_opts=opts.TitleOpts(title=title)) 87 y, x = np.histogram(data, bins=bins) 88 x = x.astype(int).astype(str) 89 xlabels = [x[i - 1] + '-' + x[i] for i in range(1, len(x))] 90 histFig.add_xaxis(xlabels) 91 histFig.add_yaxis(data.name, y.tolist(), **args) 92 result = histFig.render_notebook( 93 ) if Config['return_type'] == 'HTML' else histFig 94 return result
154 def _histogram(image, 155 min, 156 max, 157 bins): 158 """ 159 Delayed wrapping of NumPy's histogram 160 161 Also reformats the arguments. 162 """ 163 164 return numpy.histogram(image, bins, (min, max))[0]