Every line of 'bounding box opencv python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
7 def boxing(original_img, predictions): 8 newImage = np.copy(original_img) 9 car = 0 10 truck = 0 11 motorbike = 0 12 for result in predictions: 13 if result['label'] == 'car' or result['label'] == 'motorbike' or result['label'] == 'truck': 14 if result['label'] == 'car': 15 car = car + 1 16 if result['label'] == 'motorbike': 17 motorbike = motorbike + 1 18 if result['label'] == 'truck': 19 truck = truck + 1 20 21 22 top_x = result['topleft']['x'] 23 top_y = result['topleft']['y'] 24 25 btm_x = result['bottomright']['x'] 26 btm_y = result['bottomright']['y'] 27 28 confidence = result['confidence'] 29 label = result['label'] + " " + str(round(confidence, 3)) 30 31 if confidence > 0.3: 32 newImage = cv2.rectangle(newImage, (top_x, top_y), (btm_x, btm_y), (255,0,0), 2) 33 34 print ("cars : {}".format(car)) 35 print ("trucks : {}".format(truck)) 36 print ("motorbike : {}".format(motorbike)) 37 print ('\n') 38 return newImage