# 10 examples of 'condition for prime number in python' in Python

Every line of 'condition for prime number in python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

## All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
``1def is_prime(n):2	if n < 2:3		return False45	i = 267	while i * i <= n:8		if n % i == 0:9			return False1011		i += 11213	return True``
``3def is_prime(n):4    i = 35    while i * i <= n:6        if n % i == 0: return False7        i += 28    return True``
``6def is_prime(n):7   '''8   checks if a number is prime9   '''10   if n < 2:11      return False12   if n == 2:13      return True14   for x in range(2, int(n**0.5)+1, 2):15      if n % x == 0:16         return False17   return True``
``3def is_prime(n):4    if n <= 1:5        return False6    elif n == 2:7        return True8    elif n % 2 == 0:9        return False10    for i in xrange(3, int(sqrt(n))+1, 2):11        if n % i == 0:12            return False13    return True``
``21def is_prime(n):22    for i in xrange(2, int(sqrt(n)) + 1):23        if n % i == 0:24            return False2526    return True``
``19def isprime(n, precision=7):20    # http://en.wikipedia.org/wiki/Miller-Rabin_primality_test#Algorithm_and_running_time21    if n < 1:22        raise ValueError("Out of bounds, first argument must be > 0")23    elif n <= 3:24        return n >= 225    elif n % 2 == 0:26        return False27    elif n < _smallprimeset:28        return n in smallprimeset293031    d = n - 132    s = 033    while d % 2 == 0:34        d //= 235        s += 13637    for repeat in range(precision):38        a = random.randrange(2, n - 2)39        x = pow(a, d, n)4041        if x == 1 or x == n - 1: continue4243        for r in range(s - 1):44            x = pow(x, 2, n)45            if x == 1: return False46            if x == n - 1: break47        else: return False4849    return True``
``17def isprime(no):18    if no == 2:19        return True20    elif no % 2 == 0:21        return False22    sq = int(math.sqrt(no)) + 123    for i in range(3, sq, 2):24        if no % i == 0:25            return False26    return True``
``7def isPrime(num):8    # Returns True if num is a prime number, otherwise False.910    # Note: Generally, isPrime() is slower than primeSieve().1112    # all numbers less than 2 are not prime13    if num < 2:14        return False1516    # see if num is divisible by any number up to the square root of num17    for i in range(2, int(math.sqrt(num)) + 1):18        if num % i == 0:19            return False20    return True``
``20def prime(num):21    # num is actually a string because input() returns strings. We'll convert it to int22    num = int(num)2324    if num < 0:25        print("Negative integers can not be prime")26        quit()27    if num is 1:28        print("1 is neither prime nor composite")29        # See how I lazily terminated program otherwise it'd forward "None"(default behaviour of python when function30        # returns nothing) rather than True or False. Which could mess up the program.31        # If we hit this if statement above statement is printed then program exits.32        quit()  # Now you don't need to get sys.exit() to exit python has quit to handle the same thing33    if num in [2, 3]:34        # if given argument is 2 or 3, it is prime. We used list without defining a variable which is perfectly valid35        return True36    if num % 2 == 0:  # excluding all even numbers except two.37        return False38    else:39        # Here we are starting counter variable from 3 in range. Second argument excludes numbers above one third40        # of the given argument. Third argument in range sets steps to take to 2. This makes loop to iterate odds41        for x in range(3, int(num/3), 2):42            # Checking if argument is divisible by counter. % is modulus operator which returns remainder of division43            if num % x == 0:44                return False45    # It's okay to have more than one return statement when program hits return statement it exits the function.46    return True``
``23def isPrime(n):24    return not any(x for x in range(2, int(sqrt(n)) + 1) if n % x == 0)``