3 examples of 'confusion matrix python' in Python

Every line of 'confusion matrix python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
this disclaimer
16@property
17def numpy(self):
18 return self._matrix.numpy()
Important

Use secure code every time

Secure your code as it's written. Use Snyk Code to scan source code in minutes – no build needed – and fix issues immediately. Enable Snyk Code

25def __init__(self, classes):
26 self.cm = None
27 self.classes = classes
273def confusion_matrix(true, pred):
274 '''Implements a confusion matrix for true labels
275 and predicted labels. true and pred MUST BE the same length
276 and have the same distinct set of class labels represtented.
277
278 Results are identical (and similar computation time) to:
279 "sklearn.metrics.confusion_matrix"
280
281 However, this function avoids the dependency on sklearn.
282
283 Parameters
284 ----------
285 y : np.array 1d
286 Contains labels.
287 Assumes s and y contains the same distinct set of labels.
288
289 s : np.array 1d
290 Contains labels.
291 Assumes s and y contains the same distinct set of labels.
292
293 Returns
294 -------
295 confusion_matrix : np.array (2D)
296 matrix of confusion counts with true on rows and pred on columns.'''
297
298 assert(len(true) == len(pred))
299 true_classes = np.unique(true)
300 pred_classes = np.unique(pred)
301 K_true = len(true_classes) # Number of classes in true
302 K_pred = len(pred_classes) # Number of classes in pred
303 map_true = dict(zip(true_classes, range(K_true)))
304 map_pred = dict(zip(pred_classes, range(K_pred)))
305
306 result = np.zeros((K_true, K_pred))
307 for i in range(len(true)):
308 result[map_true[true[i]]][map_pred[pred[i]]] += 1
309
310 return result

Related snippets