Every line of 'convert list to numpy array' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
308 def to_array_(v): 309 return v.toArray().tolist()
17 def to_nd_float_array(list_obj): 18 return np.array(list_obj, dtype=np.float32)
162 def _convert_to_numpy(data): 163 """Returns tuple data with all elements converted to numpy ndarrays""" 164 if data is None: 165 return None 166 elif isinstance(data, tuple): 167 return tuple([_convert_to_numpy(d) for d in data]) 168 elif isinstance(data, np.ndarray): 169 return data 170 elif isinstance(data, (pd.DataFrame, pd.Series)): 171 return data.to_numpy() 172 else: 173 raise Exception("Unsupported type %s" % str(type(data)))
95 def to_list(v): 96 if v is not None and np.isscalar(v): 97 return [v] 98 else: 99 return v
151 def list_of_pairs_to_numpy(l): 152 return np.asarray([x[1] for x in l], np.float32), np.asarray([x[0] for x in l], np.int)
55 def vec_to_array(vector: np.ndarray) -> np.ndarray: 56 """ 57 Converts a 1D vector to 2D array with the length of the input vector 58 59 for example 60 >>> x = np.linspace(0, 1, 10) 61 >>> x.shape 62 (10,) 63 >>> vec_to_array(x).shape 64 (10, 1) 65 66 :param vector: 67 :return: 68 """ 69 return vector.reshape((len(vector), 1))
356 def to_ndarray(data, copy=True): 357 if copy: 358 cp = lambda x: np.copy(x) 359 else: 360 cp = lambda x: x 361 if str(type(data)) == "": 362 return cp(data.num) 363 elif isinstance(data, np.ndarray): 364 return cp(data) 365 elif isinstance(data, numbers.Number): 366 return data 367 elif isinstance(data, collections.Iterable): 368 return np.asarray(data) 369 else: 370 raise ValueError('Unknown type of data {}. Cannot add to list' 371 .format(type(data)))
20 def scalar4_vec_to_np(array): 21 npa = np.empty((len(array), 4)) 22 for i, e in enumerate(array): 23 npa[i,0] = e.x 24 npa[i,1] = e.y 25 npa[i,2] = e.z 26 npa[i,3] = e.w 27 return npa
69 def lst_2_array(): 70 """ 71 list, tuple to array 72 :return: none 73 """ 74 tp = (1, 2, 3) 75 lst = [[1, 2], [3, 4]] 76 print np.array(lst).shape 77 # (2L, 2L) 78 print np.array(lst) 79 # [[1 2] 80 # [3 4]] 81 print np.asarray(lst) 82 # [[1 2] 83 # [3 4]] 84 print np.asarray(tp)