Every line of 'convert pandas series to datetime' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
112 def get_is_daytime_from_series(series: pd.Series) -> pd.Series: 113 """Return if time in daytime interval.""" 114 interval = DAY_INTERVAL 115 return get_time_is_in_interval_from_series(series, 116 start_time=interval[0], 117 end_time=interval[1])
30 def converter(df: DataFrame) -> Series: 31 return df[field_name]
553 def to_datetime(self, dayfirst=False): 554 """ 555 DEPRECATED: use :meth:`to_timestamp` instead. 556 557 Cast to DatetimeIndex. 558 """ 559 warnings.warn("to_datetime is deprecated. Use self.to_timestamp(...)", 560 FutureWarning, stacklevel=2) 561 return self.to_timestamp()
45 def _is_datetime(s): 46 if is_datetime64_any_dtype(s): 47 return True 48 try: 49 if is_object_dtype(s): 50 pd.to_datetime(s, infer_datetime_format=True) 51 return True 52 except Exception: # pylint: disable=broad-except 53 pass 54 return False
322 def to_timestamp(self, freq=None, how='start'): 323 """ 324 Cast to DatetimeArray/Index. 325 326 Parameters 327 ---------- 328 freq : string or DateOffset, optional 329 Target frequency. The default is 'D' for week or longer, 330 'S' otherwise 331 how : {'s', 'e', 'start', 'end'} 332 333 Returns 334 ------- 335 DatetimeArray/Index 336 """ 337 from pandas.core.arrays import DatetimeArray 338 339 how = libperiod._validate_end_alias(how) 340 341 end = how == 'E' 342 if end: 343 if freq == 'B': 344 # roll forward to ensure we land on B date 345 adjust = Timedelta(1, 'D') - Timedelta(1, 'ns') 346 return self.to_timestamp(how='start') + adjust 347 else: 348 adjust = Timedelta(1, 'ns') 349 return (self + self.freq).to_timestamp(how='start') - adjust 350 351 if freq is None: 352 base, mult = libfrequencies.get_freq_code(self.freq) 353 freq = libfrequencies.get_to_timestamp_base(base) 354 else: 355 freq = Period._maybe_convert_freq(freq) 356 357 base, mult = libfrequencies.get_freq_code(freq) 358 new_data = self.asfreq(freq, how=how) 359 360 new_data = libperiod.periodarr_to_dt64arr(new_data.asi8, base) 361 return DatetimeArray._from_sequence(new_data, freq='infer')
148 def localize_datetime(x): 149 if pd.isnull(x) or isinstance(x, pd.tslib.NaTType): 150 return None 151 utz_tz = pytz.timezone('UTC') 152 local_tz = pytz.timezone(utc_to_tz) 153 d = utz_tz.localize(x) 154 d = d.astimezone(local_tz) 155 # make naive. 156 return d.replace(tzinfo=None)
302 def to_pandas(self) -> None: 303 '''Return a Pandas Index. 304 ''' 305 raise NotImplementedError('Pandas does not support a year month type, and it is ambiguous if a date proxy should be the first of the month or the last of the month.')
84 def as_timestamp(obj): 85 if isinstance(obj, Timestamp): 86 return obj 87 try: 88 return Timestamp(obj) 89 except (OutOfBoundsDatetime): 90 pass 91 return obj
8 def convert_to_datetime(datetime_str): 9 tweet_datetime = datetime.strptime(datetime_str,'%a %b %d %H:%M:%S %z %Y') 10 11 return(tweet_datetime)
20 def datetime_to_seconds(arr): 21 """Convert an array of datetime64[ns] to seconds since the UNIX epoch""" 22 23 if arr.dtype != np.dtype('datetime64[ns]'): 24 if arr.dtype == 'int64': 25 # The user has passed a unix timestamp already 26 return arr 27 elif arr.dtype == 'object' or str(arr.dtype).startswith( 28 'datetime64[ns,'): 29 # Convert to datetime64[ns] from string 30 # Or from datetime with timezone information 31 # Return timestamp in 'UTC' 32 arr = pd.to_datetime(arr, utc=True) 33 else: 34 raise TypeError(f"Invalid dtype '{arr.dtype}', expected one of: " 35 "datetime64[ns], int64 (UNIX epoch), " 36 "or object (string)") 37 return arr.view('i8') // 10**9 # ns -> s since epoch