Every line of 'cv2 resize image' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
38 def image_resize(image, width = None, height = None, inter = cv2.INTER_AREA): 39 # ref: https://stackoverflow.com/questions/44650888/resize-an-image-without-distortion-opencv 40 41 # initialize the dimensions of the image to be resized and 42 # grab the image size 43 dim = None 44 (h, w) = image.shape[:2] 45 46 # if both the width and height are None, then return the 47 # original image 48 if width is None and height is None: 49 return image 50 51 # check to see if the width is None 52 if width is None: 53 # calculate the ratio of the height and construct the 54 # dimensions 55 r = height / float(h) 56 dim = (int(w * r), height) 57 58 # otherwise, the height is None 59 else: 60 # calculate the ratio of the width and construct the 61 # dimensions 62 r = width / float(w) 63 dim = (width, int(h * r)) 64 65 # resize the image 66 resized = cv2.resize(image, dim, interpolation = inter) 67 68 # return the resized image 69 return resized
26 def resize_image(image,w,h): 27 image=cv2.resize(image,(w,h)) 28 cv2.imwrite(Folder_name+"/Resize-"+str(w)+"*"+str(h)+Extension, image)
48 def scale_image(self, image, scale): 49 50 if self.settings.opencv_or_pil == 'PIL': 51 ow, oh = image.size 52 nw = ow * scale 53 nh = oh * scale 54 return image.resize((int(nw), int(nh)), Image.ANTIALIAS) 55 56 else: 57 oh, ow, channels = image.shape 58 59 nw = ow * scale 60 nh = oh * scale 61 62 # PERF return cv2.resize(image, (int(nw), int(nh)), interpolation=cv2.INTER_NEAREST) 63 return cv2.resize(image, (int(nw), int(nh)), interpolation=cv2.INTER_CUBIC)
29 def imresize(img, size, return_scale=False, interpolation='bilinear'): 30 """Resize image to a given size. 31 32 Args: 33 img (ndarray): The input image. 34 size (tuple): Target (w, h). 35 return_scale (bool): Whether to return `w_scale` and `h_scale`. 36 interpolation (str): Interpolation method, accepted values are 37 "nearest", "bilinear", "bicubic", "area", "lanczos". 38 39 Returns: 40 tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or 41 `resized_img`. 42 """ 43 h, w = img.shape[:2] 44 resized_img = cv2.resize( 45 img, size, interpolation=interp_codes[interpolation]) 46 if not return_scale: 47 return resized_img 48 else: 49 w_scale = size[0] / w 50 h_scale = size[1] / h 51 return resized_img, w_scale, h_scale
103 def __resize_image(self, image): 104 self.input_height = image.shape[0] 105 if self.height is not None: 106 zoom = self.height / float(image.shape[0]) 107 width = int(float(image.shape[1]) * zoom) + 1 108 image = cv2.resize(image, (width, self.height), interpolation=cv2.INTER_CUBIC) 109 return image
141 def resize_image(self, img, scale): 142 """ 143 resize image and transform dimention to [batchsize, channel, height, width] 144 Parameters: 145 ---------- 146 img: numpy array , height x width x channel,input image, channels in BGR order here 147 scale: float number, scale factor of resize operation 148 Returns: 149 ------- 150 transformed image tensor , 1 x channel x height x width 151 """ 152 height, width, channels = img.shape 153 new_height = int(height * scale) # resized new height 154 new_width = int(width * scale) # resized new width 155 new_dim = (new_width, new_height) 156 img_resized = cv2.resize(img, new_dim, interpolation=cv2.INTER_LINEAR) # resized image 157 158 return img_resized
7 def resize_img(img, scale_factor): 8 new_size = (np.floor(np.array(img.shape[0:2]) * scale_factor)).astype(int) 9 new_img = cv2.resize(img, (new_size[1], new_size[0])) 10 # This is scale factor of [height, width] i.e. [y, x] 11 actual_factor = [ 12 new_size[0] / float(img.shape[0]), new_size[1] / float(img.shape[1]) 13 ] 14 return new_img, actual_factor
27 def resizeimg(img, width, height): 28 #img = cv2.imread(path) 29 #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 30 img = cv2.resize(img, (width,height)) 31 32 img = img.astype(float) 33 img = img * (2.0 / 255.0) - 1.0 34 return img
440 def resize_image(img, min_side=800, max_side=1333): 441 """ Resize an image such that the size is constrained to min_side and max_side. 442 443 Args 444 min_side: The image's min side will be equal to min_side after resizing. 445 max_side: If after resizing the image's max side is above max_side, resize until the max side is 446 equal to max_side. 447 448 Returns 449 A resized image. 450 """ 451 (rows, cols, _) = img.shape 452 453 smallest_side = min(rows, cols) 454 455 # rescale the image so the smallest side is min_side 456 scale = min_side / smallest_side 457 458 # check if the largest side is now greater than max_side, which can happen 459 # when images have a large aspect ratio 460 largest_side = max(rows, cols) 461 if largest_side * scale > max_side: 462 scale = max_side / largest_side 463 464 # resize the image with the computed scale 465 img = cv2.resize(img, None, fx=scale, fy=scale) 466 467 return img, scale
49 def _resize(frame): 50 """Resizing function utilizing OpenCV. 51 52 Args: 53 frame: A frame from a cv2.video_reader object to process 54 55 Returns: 56 resized_frame: the frame, resized 57 """ 58 resized_frame = cv2.resize(frame, 59 None, 60 fx=RESIZE_FACTOR, 61 fy=RESIZE_FACTOR, 62 interpolation=cv2.INTER_AREA) 63 64 return resized_frame