Every line of 'decisiontreeregressor' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
183 def predict(self, X): 184 predictions = np.zeros(X.shape[0]) 185 for i, observation in enumerate(X): 186 predictions[i] = self.single_prediction(observation, self.root) 187 return predictions
180 def train_sgd_forest(X, Y, 181 num_trees = 20, 182 max_depth = 3, 183 bagging_percent=0.65, 184 randomize_alpha=False, 185 model_args = {}, 186 tree_args= {}): 187 """A random forest whose base classifier is a tree of SGD classifiers 188 189 Parameters 190 ---------- 191 X : numpy array containing input data. 192 Should have samples for rows and features for columns. 193 194 Y : numpy array containing class labels for each sample 195 196 num_trees : how big is the forest? 197 198 bagging_percent : what subset of the data is each tree trained on? 199 200 randomize_alpha : bool 201 202 model_args : parameters for each SGD classifier 203 204 tree_args : parameters for each tree 205 """ 206 bagsize = bagging_percent * X.shape[0] 207 tree = mk_sgd_tree(bagsize, max_depth, randomize_alpha, model_args, tree_args) 208 forest = ClassifierEnsemble( 209 base_model = tree, 210 num_models = num_trees, 211 bagging_percent = bagging_percent) 212 forest.fit(X,Y) 213 return forest
36 def decisiontree(data): 37 Xt = [] 38 Yt = [] 39 Xv = [] 40 Yv = [] 41 # Adds 90% of the data to the trainingsset, 10% to the validationset. 42 np.random.shuffle(data) 43 trainingsize = 0.9 * len(data) 44 training = data[:int(trainingsize)] 45 validation = data[int(trainingsize):] 46 47 # Creates the X and Y parts of the training and test sets. 48 # Also fills the tree species list (classes) with all different species. 49 for line in training: 50 if line[-1] not in classes: 51 classes.append(line[-1]) 52 Xt.append(line[0:-1]) 53 Yt.append(line[-1]) 54 for line in validation: 55 if line[-1] not in classes: 56 return decisiontree(data) 57 Xv.append(line[0:-1]) 58 Yv.append(line[-1]) 59 60 clf = tree.DecisionTreeClassifier() 61 clf = clf.fit(Xt, Yt) 62 return clf, Xt, Yt, Xv, Yv
520 def train(self, num_classes=2, categorical_features=None, max_depth=5): 521 categorical_features = categorical_features or {} 522 model = DecisionTree.trainClassifier( 523 self._labeled_feature_vector_rdd(), 524 numClasses=num_classes, 525 categoricalFeaturesInfo=categorical_features, 526 maxDepth=max_depth) 527 return DecisionTreeModel(model, self.feature_cols)
52 def randomforestClassifier(trainData, trainLabel): 53 54 rfClf = RandomForestClassifier(n_estimators=110, max_depth=5, min_samples_split=2, 55 min_samples_leaf=1,random_state=34) 56 rfClf.fit(trainData, trainLabel) 57 return rfClf
71 def _create_tree(self, X, Y, feature_name): 72 if len(set(Y)) == 1: 73 return Y[0] 74 75 most_common_Y = Counter(Y).most_common()[0][0] 76 if X.shape[1] == 1 and X.columns[0] == '__target__': 77 return most_common_Y 78 79 best_feature, best_info_gain = self._get_best_feature(X, Y) 80 if best_feature is None: 81 return most_common_Y 82 83 feature_name.remove(best_feature) 84 self._shannon.setdefault(best_feature, [best_info_gain, 1]) 85 subColumn = X.columns 86 subColumn.remove(best_feature) 87 subX = X[subColumn] 88 subtree = {'???': most_common_Y} 89 feature_column = X[best_feature] 90 91 for value in set(feature_column): 92 equal_value_index = [i for i, _ in enumerate(feature_column) if _ == value] 93 x = subX[equal_value_index] 94 y = subX[equal_value_index]['__target__'] 95 subtree[value] = self._create_tree(x, y, deepcopy(feature_name)) 96 return {best_feature: subtree}
366 def decision_function(self, X): 367 X = array2d(X, dtype=DTYPE) 368 result = numpy.zeros(len(X)) 369 for rate, estimator in zip(self.learning_rates, self.classifiers): 370 result += rate * estimator.predict(X) 371 return result
75 def random_forest_classifier(features, labels): 76 parameters = { 77 'n_estimators': range(10, 201, 10), 78 'max_depth': [None] + range(1, 11, 1), 79 } 80 classifier = GridSearchCV(RandomForestClassifier(random_state=1), parameters, n_jobs=-1) 81 classifier.fit(features, labels) 82 return classifier
23 def learn_regression_tree_ensemble(img_features, gt_illuminants, num_trees, max_tree_depth): 24 eps = 0.001 25 inst = [[img_features[i], gt_illuminants[i][0] / (sum(gt_illuminants[i]) + eps), 26 gt_illuminants[i][1] / (sum(gt_illuminants[i]) + eps)] for i in range(len(img_features))] 27 28 inst.sort(key = lambda obj: obj[1]) #sort by r chromaticity 29 stride = int(np.ceil(len(inst) / float(num_trees+1))) 30 sz = 2*stride 31 dst_model = [] 32 for tree_idx in range(num_trees): 33 #local group in the training data is additionally weighted by num_trees 34 local_group_range = range(tree_idx*stride, min(tree_idx*stride+sz, len(inst))) 35 X = num_trees * [inst[i][0] for i in local_group_range] 36 y_r = num_trees * [inst[i][1] for i in local_group_range] 37 y_g = num_trees * [inst[i][2] for i in local_group_range] 38 39 #add the rest of the training data: 40 X = X + [inst[i][0] for i in range(len(inst)) if i not in local_group_range] 41 y_r = y_r + [inst[i][1] for i in range(len(inst)) if i not in local_group_range] 42 y_g = y_g + [inst[i][2] for i in range(len(inst)) if i not in local_group_range] 43 44 local_model = [] 45 for feature_idx in range(len(X[0])): 46 tree_r = DecisionTreeRegressor(max_depth = max_tree_depth, random_state = 1234) 47 tree_r.fit([el[feature_idx][0] for el in X], y_r) 48 tree_g = DecisionTreeRegressor(max_depth = max_tree_depth, random_state = 1234) 49 tree_g.fit([el[feature_idx][0] for el in X], y_g) 50 local_model.append([tree_r, tree_g]) 51 dst_model.append(local_model) 52 return dst_model
117 def __init__(self, hyperparameters=None, 118 n_jobs=GRIDSEARCH_CV_NUM_PARALLEL_JOBS, 119 cv=GRIDSEARCH_NUM_CV_FOLDS): 120 self.fitted_classifier = None 121 self.n_jobs = n_jobs 122 self.cv = cv 123 if hyperparameters is None: 124 self.hyperparameters = { 125 'n_estimators': [10, 100, 200, 500], 126 'max_samples':[0.5, 1], 127 'max_features': [0.5,1], 128 'base_estimator': DecisionTreeRegressor()} 129 else: 130 self.hyperparameters=hyperparameters