Every line of 'drop first column pandas' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
39 def _drop_col(self, df): 40 ''' 41 Drops last column, which was added in the parsing procedure due to a 42 trailing white space for each sample in the text file 43 Arguments: 44 df: pandas dataframe 45 Return: 46 df: original df with last column dropped 47 ''' 48 return df.drop(df.columns[-1], axis=1)
332 def dropcols(df, start=None, end=None): 333 """Drop columns that contain NaN within [start, end] inclusive. 334 335 A wrapper around DataFrame.dropna() that builds an easier *subset* 336 syntax for tseries-indexed DataFrames. 337 338 Parameters 339 ---------- 340 df : DataFrame 341 start : str or datetime, default None 342 start cutoff date, inclusive 343 end : str or datetime, default None 344 end cutoff date, inclusive 345 346 Example 347 ------- 348 df = DataFrame(np.random.randn(10,3), 349 index=pd.date_range('2017', periods=10)) 350 351 # Drop in some NaN 352 df.set_value('2017-01-04', 0, np.nan) 353 df.set_value('2017-01-02', 2, np.nan) 354 df.loc['2017-01-05':, 1] = np.nan 355 356 # only col2 will be kept--its NaN value falls before `start` 357 print(dropcols(df, start='2017-01-03')) 358 2 359 2017-01-01 0.12939 360 2017-01-02 NaN 361 2017-01-03 0.16596 362 2017-01-04 1.06442 363 2017-01-05 -1.87040 364 2017-01-06 -0.17160 365 2017-01-07 0.94588 366 2017-01-08 1.49246 367 2017-01-09 0.02042 368 2017-01-10 0.75094 369 370 """ 371 372 if isinstance(df, Series): 373 raise ValueError("func only applies to `pd.DataFrame`") 374 if start is None: 375 start = df.index[0] 376 if end is None: 377 end = df.index[-1] 378 subset = df.index[(df.index >= start) & (df.index <= end)] 379 return df.dropna(axis=1, subset=subset)
35 @property 36 def drop_columns(self): 37 drop_col=self.uni_table.query('Iv<%s'%(self._iv_threshold)) 38 return pd.concat([drop_col,self.uni_table[self.uni_table['Iv'].isnull()]])
80 def _clean_columns(df, keep_colnames): 81 new_colnames = [] 82 for i,colname in enumerate(df.columns): 83 if colname not in keep_colnames: 84 new_colnames.append(i) 85 else: 86 new_colnames.append(colname) 87 return new_colnames
29 def _concat(df, type): 30 if df is None: 31 df = pd.DataFrame(_object_blocks[type]) 32 else: 33 _df = pd.DataFrame(_object_blocks[type]) 34 df = pd.concat([df, _df], sort=True) 35 return df
653 def set_index_post_series(df, index_name, drop, column_dtype): 654 df2 = df.drop("_partitions", axis=1).set_index("_index", drop=True) 655 df2.index.name = index_name 656 df2.columns = df2.columns.astype(column_dtype) 657 return df2
78 def _clean_column(self, column): 79 if not isinstance(column, (int, str, unicode)): 80 raise ValueError('{} is not a valid column'.format(column)) 81 return column in self.df.columns
420 def df_column_types_rename(df): 421 result = [df[x].dtype.name for x in list(df.columns)] 422 result[:] = [x if x != 'object' else 'string' for x in result] 423 result[:] = [x if x != 'int64' else 'integer' for x in result] 424 result[:] = [x if x != 'float64' else 'double' for x in result] 425 result[:] = [x if x != 'bool' else 'boolean' for x in result] 426 427 return result
409 def temp_remove_fields(df, removeFields): 410 411 tempRemoveFields = list(set(df) & set(removeFields)) 412 tempDf = df[tempRemoveFields] 413 df = df.drop(columns=tempRemoveFields) 414 415 return df, tempDf
259 def drop_some(df_: pd.DataFrame, thresh: int) -> pd.DataFrame: 260 # thresh is the minimum number of NA, the 1 indicates that columns should be dropped not rows 261 return df_.dropna(1, thresh=thresh)