3 examples of 'feature importance sklearn' in Python

Every line of 'feature importance sklearn' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
796def feature_importances(clf, X, y):
797
798 from sklearn.feature_selection import SelectKBest
799 from sklearn.feature_selection import f_classif
800
801 try:
802 clfimp = clf.feature_importances_
803 except:
804 sk = SelectKBest(f_classif, k='all')
805 sk_fit = sk.fit(X, y)
806 clfimp = sk_fit.scores_
807
808 return (clfimp)
411def get_features_importance(estimator):
412
413 features_importance = estimator.coef_
414 print(features_importance)
415 return features_importance
168def feature_importance(self, df, model, convert=False):
169 X, y = self.split_x_y(df)
170
171 if convert:
172 X = self.one_hot_encode(X, self.categoricals(X))
173 model.fit(X, y)
174 importances = model.feature_importances_
175 std = np.std([tree.feature_importances_ for tree in model.estimators_], axis=0)
176 indices = np.argsort(importances)
177
178 print("Feature ranking:")
179 plt.figure(figsize=(16, 14))
180 plt.title("Feature importances")
181 plt.barh(
182 range(X.shape[1]),
183 importances[indices],
184 color="r",
185 xerr=std[indices],
186 align="center",
187 )
188 plt.yticks(range(X.shape[1]), [list(X)[i] for i in indices])
189 plt.ylim([-1, X.shape[1]])
190 plt.show()

Related snippets