Every line of 'from sklearn.decision_tree import decisiontreeclassifier' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
36 def decisiontree(data): 37 Xt = [] 38 Yt = [] 39 Xv = [] 40 Yv = [] 41 # Adds 90% of the data to the trainingsset, 10% to the validationset. 42 np.random.shuffle(data) 43 trainingsize = 0.9 * len(data) 44 training = data[:int(trainingsize)] 45 validation = data[int(trainingsize):] 46 47 # Creates the X and Y parts of the training and test sets. 48 # Also fills the tree species list (classes) with all different species. 49 for line in training: 50 if line[-1] not in classes: 51 classes.append(line[-1]) 52 Xt.append(line[0:-1]) 53 Yt.append(line[-1]) 54 for line in validation: 55 if line[-1] not in classes: 56 return decisiontree(data) 57 Xv.append(line[0:-1]) 58 Yv.append(line[-1]) 59 60 clf = tree.DecisionTreeClassifier() 61 clf = clf.fit(Xt, Yt) 62 return clf, Xt, Yt, Xv, Yv
183 def predict(self, X): 184 predictions = np.zeros(X.shape[0]) 185 for i, observation in enumerate(X): 186 predictions[i] = self.single_prediction(observation, self.root) 187 return predictions
41 def __init__(self, classes): 42 """ 43 Constructor 44 :param classes: Classes 45 :param lang: Spacy language 46 """ 47 super(DecisionTree, self).__init__(classes) 48 # Properties 49 self._token2index = dict() 50 self._voc_size = 0 51 self._samples = list() 52 self._n_samples = 0 53 self._tree_classifier = DecisionTreeClassifier(random_state=0)