Every line of 'group by count pandas' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
90 def crosscount(df, col_list): 91 """ 92 tools for multy thread bi_count 93 """ 94 assert isinstance(col_list, list) 95 assert len(col_list) >= 2 96 name = "count_"+ '_'.join(col_list) 97 df[name] = df.groupby(col_list)[col_list[0]].transform('count') 98 return df
91 def apply_counts_to_group(group): 92 """Add the _count and _group_count fields to a group""" 93 if '_subgroup' in group: 94 subgroups = apply_counts(group['_subgroup']) 95 group['_subgroup'] = subgroups 96 group['_count'] = sum(subgroup['_count'] for subgroup in subgroups) 97 group['_group_count'] = len(subgroups) 98 return group
128 def group_by(self, dataset, field_name=None): 129 if field_name is None: 130 field_name = self.field_name 131 132 items = self._get_base_set(dataset) 133 134 # Get the min and max 135 min_val, max_val = self._get_range(items, field_name) 136 if min_val is None: 137 return [] 138 139 # Get a good bin size 140 bin_size = self._get_bin_size(min_val, max_val) 141 142 # Calculate a grouping variable 143 items = self._add_grouping_value(items, bin_size, field_name) 144 145 # Group by it 146 items = items.values('value') 147 148 # Count the messages in each group 149 result = self._annotate(items) 150 151 return BinnedResultSet(result, bin_size, min_val, max_val)