Every line of 'history.history keras' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
7 def test_history(self): 8 attention = SeqSelfAttention(return_attention=True, 9 attention_width=3, 10 history_only=True, 11 name='Attention') 12 self.check_mask_shape(attention)
Secure your code as it's written. Use Snyk Code to scan source code in minutes – no build needed – and fix issues immediately. Enable Snyk Code
65 def _history(self): 66 pass
141 def load_history(self, history_file): 142 """ 143 Load benchmark history from file 144 145 Args: 146 history_file: path to history file 147 148 Returns: 149 150 """ 151 logging.info("Loading benchmark history data from {}".format(history_file)) 152 with open(os.path.join(os.getcwd(), history_file), "rb") as fp: 153 self.history_data = pickle.load(fp)
161 def restore_history(self, history): 162 return self._restore_history(history, _called_directly=False)
16 def _save_history(historyPath = _history): 17 readline.write_history_file(_history)
6 def history(args): 7 with open(HISTORY_PATH, 'r') as history_file: 8 lines = history_file.readlines() 9 10 # default limit is whole file 11 limit = len(lines) 12 13 if len(args) > 0: 14 limit = int(args[0]) 15 16 # start history line to print out 17 start = len(lines) - limit 18 19 for line_num, line in enumerate(lines): 20 if line_num >= start: 21 sys.stdout.write('%d %s' % (line_num + 1, line)) 22 sys.stdout.flush() 23 24 return SHELL_STATUS_RUN
264 def do_history(self, line): 265 """ Show the history. """ 266 self.print_history()
31 def plot_history(history): 32 # summarize history for accuracy 33 plt.plot(history.history['acc']) 34 plt.plot(history.history['val_acc']) 35 plt.title('model accuracy') 36 plt.ylabel('accuracy') 37 plt.xlabel('epoch') 38 plt.legend(['train', 'validation'], loc='upper left') 39 plt.show() 40 # summarize history for loss 41 plt.plot(history.history['loss']) 42 plt.plot(history.history['val_loss']) 43 plt.title('model loss') 44 plt.ylabel('loss') 45 plt.xlabel('epoch') 46 plt.legend(['train', 'validation'], loc='upper left') 47 plt.show() 48 # summarize history for error 49 plt.plot(history.history['mean_absolute_error']) 50 plt.plot(history.history['val_mean_absolute_error']) 51 plt.title('model mean_absolute_error') 52 plt.ylabel('mean_absolute_error') 53 plt.xlabel('epoch') 54 plt.legend(['train', 'validation'], loc='upper left') 55 plt.show()
43 def save_history(history, result_dir, name): 44 loss=history.history['loss'] 45 acc=history.history['acc'] 46 val_loss=history.history['val_loss'] 47 val_acc=history.history['val_acc'] 48 nb_epoch=len(acc) 49 50 with open(os.path.join(result_dir, 'result_{}.txt'.format(name)), 'w') as fp: 51 fp.write('epoch\tloss\tacc\tval_loss\tval_acc\n') 52 for i in range(nb_epoch): 53 fp.write('{}\t{}\t{}\t{}\t{}\n'.format( 54 i, loss[i], acc[i], val_loss[i], val_acc[i]))
223 def _set_history(self, h): 224 self._history = h 225 self._history_was_set = True