Every line of 'how to check if tensorflow is using gpu' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
152 def gpu_available_in_session(): 153 sess = tfv1.get_default_session() 154 for dev in sess.list_devices(): 155 if dev.device_type.lower() == 'gpu': 156 return True 157 return False
204 def is_gpu_available(): 205 from tensorflow.python.client import device_lib 206 local_device_protos = device_lib.list_local_devices() 207 gpu_list = [x.name for x in local_device_protos if x.device_type == 'GPU'] 208 if len(gpu_list) > 0: 209 print("Tensorflow GPU:", gpu_list) 210 return True 211 else: 212 return False
36 def check_cuda_support(): 37 """ Check if tensorflow was build with CUDA """ 38 return tf.test.is_built_with_cuda()
29 def linux_with_gpu(): 30 """Returns if machine is running an Linux OS and has a GPU""" 31 has_gpu = is_available() 32 return is_linux() and has_gpu
251 def gpu_no_of_var(var): 252 """ 253 Function that returns the GPU number or whether the tensor is on GPU or not 254 255 Args: 256 var: torch tensor 257 258 Returns: 259 The CUDA device that the torch tensor is on, or whether the tensor is on GPU 260 261 """ 262 263 try: 264 is_cuda = next(var.parameters()).is_cuda 265 except: 266 is_cuda = var.is_cuda 267 268 if is_cuda: 269 try: 270 return next(var.parameters()).get_device() 271 except: 272 return var.get_device() 273 else: 274 return False
211 def test_tf_support_gpu_instances(sagemaker_session, tf_version): 212 tf = _build_tf(sagemaker_session, tf_version, train_instance_type="ml.g2.2xlarge") 213 214 assert tf.train_image() == _get_full_gpu_image_uri(tf_version) 215 216 tf = _build_tf(sagemaker_session, tf_version, train_instance_type="ml.p2.2xlarge") 217 218 assert tf.train_image() == _get_full_gpu_image_uri(tf_version)
9 def mxnet_prefer_gpu(): 10 """If gpu available return gpu, else cpu 11 12 Returns 13 ------- 14 context : Context 15 The preferable GPU context. 16 """ 17 gpu = int(os.environ.get('MXNET_GPU', default=0)) 18 if gpu in mx.test_utils.list_gpus(): 19 return mx.gpu(gpu) 20 return mx.cpu()
239 @classmethod 240 def supports_device(cls, device): 241 return common_supports_device(device)
17 def get_gpu_count(): 18 local_device_protos = device_lib.list_local_devices() 19 return len([x.name for x in local_device_protos if x.device_type == 'GPU'])
14 def gpu_count(): 15 return len(get_available_gpus())