Every line of 'how to find factors of a number in python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
313 def factors(number): 314 """ 315 316 Find all of the factors of a number and return it as a list 317 318 number: 319 The number to find the factors for 320 321 """ 322 323 factors = [] 324 for i in range(1, number + 1): 325 if number % i == 0: 326 factors.append(i) 327 return factors
Secure your code as it's written. Use Snyk Code to scan source code in minutes – no build needed – and fix issues immediately. Enable Snyk Code
30 def get_factors(n): 31 """[summary] 32 33 Arguments: 34 n {[int]} -- [to analysed number] 35 36 Returns: 37 [list of lists] -- [all factors of the number n] 38 """ 39 40 def factor(n, i, combi, res): 41 """[summary] 42 helper function 43 44 Arguments: 45 n {[int]} -- [number] 46 i {[int]} -- [to tested divisor] 47 combi {[list]} -- [catch divisors] 48 res {[list]} -- [all factors of the number n] 49 50 Returns: 51 [list] -- [res] 52 """ 53 54 while i * i <= n: 55 if n % i == 0: 56 res += combi + [i, int(n/i)], 57 factor(n/i, i, combi+[i], res) 58 i += 1 59 return res 60 return factor(n, 2, [], [])
34 def inverse_factorial(number, round_up=True): 35 ''' 36 Get the integer that the factorial of would be `number`. 37 38 If `number` isn't a factorial of an integer, the result will be rounded. By 39 default it'll be rounded up, but you can specify `round_up=False` to have 40 it be rounded down. 41 42 Examples: 43 44 >>> inverse_factorial(100) 45 5 46 >>> inverse_factorial(100, round_up=False) 47 4 48 49 ''' 50 assert number >= 0 51 if number == 0: 52 return 0 53 elif number < 1: 54 return int(round_up) # Heh. 55 elif number == 1: 56 return 1 57 else: 58 current_number = 1 59 for multiplier in itertools.count(2): 60 current_number *= multiplier 61 if current_number == number: 62 return multiplier 63 elif current_number > number: 64 return multiplier if round_up else (multiplier - 1)
241 def closest_square_factors(integer, larger_first=True): 242 243 factors = [] 244 root = ceil(sqrt(integer)) 245 for i in range(root, integer+1): 246 if integer % i == 0: 247 return (i, int(integer / i)) if larger_first else (int(integer / i), i) 248 249 return (1, integer)
17 def factor_modulus(n, d, e): 18 """ 19 Efficiently recover non-trivial factors of n 20 See: Handbook of Applied Cryptography 21 8.2.2 Security of RSA -> (i) Relation to factoring (p.287) 22 http://www.cacr.math.uwaterloo.ca/hac/ 23 """ 24 t = (e * d - 1) 25 s = 0 26 27 while True: 28 quotient, remainder = divmod(t, 2) 29 30 if remainder != 0: 31 break 32 33 s += 1 34 t = quotient 35 36 found = False 37 38 while not found: 39 i = 1 40 a = random.randint(1,n-1) 41 42 while i <= s and not found: 43 c1 = pow(a, pow(2, i-1, n) * t, n) 44 c2 = pow(a, pow(2, i, n) * t, n) 45 46 found = c1 != 1 and c1 != (-1 % n) and c2 == 1 47 48 i += 1 49 50 p = fractions.gcd(c1-1, n) 51 q = n // p 52 53 return p, q
746 def prime_number_factorisation(n): 747 if n < 2: 748 return [n] 749 i = 2 750 factors = [] 751 while i * i <= n: 752 if n % i: 753 i += 1 754 else: 755 n //= i 756 factors.append(i) 757 if n > 1: 758 factors.append(n) 759 return factors