Every line of 'how to find the average of a list in python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
74 def average(item): 75 # This sums all the items of a parameter, in this program's case the parameters are lists. 76 summing = sum(item) 77 # This counts the number of items in the lists. 78 counting = len(item) 79 # This divides the total sum by the amount of items. 80 result = summing / counting 81 # This returns the average. 82 return result
104 def test_averageOnList(self): 105 items = [0, 8, 4, 10] 106 res = BlocklyMethods.averageOnList(items) 107 self.assertEqual(5.5, res)
59 def average(average_window, data): 60 window = [] 61 newdata = [] 62 for v in data: 63 window.append(v) 64 if len(window) == average_window: 65 newdata.append(sum(window)/average_window) 66 del window[0] 67 return newdata
36 def average(a,b): 37 return tuple(0.5*(a[i]+b[i]) for i in range(len(a)))
11 def avg(l): 12 """ 13 Returns the average between list elements 14 """ 15 return (sum(l)/float(len(l)))
159 def mean_list(x, y): 160 res = [] 161 for i, j in zip(x, y): 162 res.append(round(mean(i, j), 3)) 163 return res
220 def getAverage(seq): 221 """ 222 Finds the average of 223 >>> getAverage(['3', 9.4, '0.8888', 5, 1.344444, '3', '5', 6, '7']) 224 4.033320571428571 225 """ 226 return sum(seq) / len(seq)
1 def mean(lst): 2 # FASTER!!!!! 3 return sum(lst)/len(lst)
17 def variance(lst, avg): 18 var_list = [] 19 for num in lst: 20 var_list.append((num - avg)**2) 21 variance = sum(var_list) / len(var_list) 22 return variance