Every line of 'how to plot bar graph in python using csv file' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
42 def generate_graph(): 43 with open('../../data/ram.dat', 'r') as csvfile: 44 data_source = csv.reader(csvfile, delimiter=' ', skipinitialspace=True) 45 for row in data_source: 46 # [0] column is a time column 47 # Convert to datetime data type 48 a = datetime.strptime((row[0]),'%H:%M:%S') 49 x.append((a)) 50 # The remaining columns contain data 51 free_mem.append(str((int(row[1])/1024)+(int(row[4])/1024)+(int(row[5])/1024))) 52 used_mem.append(str((int(row[2])/1024)-(int(row[4])/1024)-(int(row[5])/1024))) 53 buffer_mem.append(str(int(row[4])/1024)) 54 cached_mem.append(str(int(row[5])/1024)) 55 56 # Plot lines 57 plt.plot(x,free_mem, label='Free', color='g', antialiased=True) 58 plt.plot(x,used_mem, label='Used', color='r', antialiased=True) 59 plt.plot(x,buffer_mem, label='Buffer', color='b', antialiased=True) 60 plt.plot(x,cached_mem, label='Cached', color='c', antialiased=True) 61 62 # Graph properties 63 plt.xlabel('Time',fontstyle='italic') 64 plt.ylabel('Memory (MB)',fontstyle='italic') 65 plt.title('RAM usage graph') 66 plt.grid(linewidth=0.4, antialiased=True) 67 plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=2, fancybox=True, shadow=True) 68 plt.autoscale(True) 69 70 # Graph saved to PNG file 71 plt.savefig('../../graphs/ram.png', bbox_inches='tight')
281 def generate_bar_chart(chart_data, bottoms=None, bar_width=0.4, labels=[], orientation='vertical'): 282 """ 283 Creates a bar chart for revenue using chart_data. 284 """ 285 fig, ax = plt.subplots(figsize=(12, 6)) 286 287 # Get the revenue data from the ValOp objects. 288 indices = np.arange(len(chart_data)) 289 290 # Plot. 291 with sb.axes_style('whitegrid'): 292 if bottoms is None: 293 if orientation == 'horizontal': 294 ax.barh(indices, chart_data, height=bar_width, color=PALETTE) 295 plt.yticks(indices, labels, rotation=0) 296 ax.set_xticklabels(['{:,}'.format(int(x)) for x in ax.get_xticks().tolist()]) # Comma separator for y-axis tick labels. 297 else: 298 ax.bar(indices, chart_data, width=bar_width, color=PALETTE) 299 plt.xticks(indices, labels, rotation=0) 300 ax.set_yticklabels(['{:,}'.format(int(x)) for x in ax.get_yticks().tolist()]) # Comma separator for y-axis tick labels. 301 else: 302 if orientation == 'horizontal': 303 ax.barh(indices, chart_data, left=bottoms, height=bar_width, color=PALETTE) 304 plt.yticks(indices, labels, rotation=0) 305 ax.set_xticklabels(['{:,}'.format(int(x)) for x in ax.get_xticks().tolist()]) # Comma separator for y-axis tick labels. 306 # ax.set_xlim(0, max(chart_data)) 307 else: 308 ax.bar(indices, chart_data, bottom=bottoms, width=bar_width, color=PALETTE) 309 plt.xticks(indices, labels, rotation=0) 310 ax.set_yticklabels(['{:,}'.format(int(x)) for x in ax.get_yticks().tolist()]) # Comma separator for y-axis tick labels. 311 # ax.set_ylim(0, max(chart_data)) 312 313 # sb.despine(offset=10, trim=True) 314 315 return fig, ax
1120 def plot_bar_chart(page, datasets, dataset_labels, dataset_colors, 1121 x_group_labels, err, 1122 title=None, xlabel='Bins', ylabel='Counts'): 1123 ''' 1124 Plot a bar chart into page, using the supplied data. 1125 ''' 1126 assert len(datasets) == len(err) 1127 assert len(datasets) == len(dataset_colors) 1128 assert len(datasets) == len(dataset_labels) 1129 for dataset in datasets: 1130 assert len(dataset) == len(datasets[0]) 1131 assert len(dataset) == len(x_group_labels) 1132 1133 num_x_groups = len(datasets[0]) 1134 x_group_locations = pylab.arange(num_x_groups) 1135 width = 1.0 / float(len(datasets)+1) 1136 1137 figure = pylab.figure() 1138 axis = figure.add_subplot(111) 1139 bars = [] 1140 1141 for i in xrange(len(datasets)): 1142 bar = axis.bar(x_group_locations + (width*i), datasets[i], width, 1143 yerr=err[i], color=dataset_colors[i], 1144 error_kw=dict(ecolor='pink', lw=3, capsize=6, 1145 capthick=3)) 1146 bars.append(bar) 1147 1148 if title is not None: 1149 axis.set_title(title) 1150 if ylabel is not None: 1151 axis.set_ylabel(ylabel) 1152 if xlabel is not None: 1153 axis.set_xlabel(xlabel) 1154 1155 axis.set_xticks(x_group_locations + width*len(datasets)/2) 1156 x_tick_names = axis.set_xticklabels(x_group_labels) 1157 rot = 0 if num_x_groups == 1 else 15 1158 pylab.setp(x_tick_names, rotation=rot, fontsize=10) 1159 axis.set_xlim(-width, num_x_groups) 1160 y_tick_names = axis.get_yticklabels() 1161 pylab.setp(y_tick_names, rotation=0, fontsize=10) 1162 1163 axis.legend([bar[0] for bar in bars], dataset_labels) 1164 page.savefig() 1165 pylab.close()
200 def readPlot(): 201 dataFolder = 'tut8_data/' 202 batchLabel = 'tauWeight' 203 204 params, data = readBatchData(dataFolder, batchLabel, loadAll=0, saveAll=1, vars=None, maxCombs=None) 205 plot2DRate(dataFolder, batchLabel, params, data, 'synMechTau2', 'connWeight', 'M', "'M' pop rate (Hz)")
142 def plot_bar(xs, ys, names, error_ys=None, xlabel='x', ylabel='y', title=''): 143 144 layout = go.Layout( 145 title=title, 146 xaxis=dict( 147 title=xlabel, 148 titlefont=dict( 149 family='Courier New, monospace', 150 size=18, 151 color='#7f7f7f' 152 ) 153 ), 154 yaxis=dict( 155 title=ylabel, 156 titlefont=dict( 157 family='Courier New, monospace', 158 size=18, 159 color='#7f7f7f' 160 ) 161 ) 162 ) 163 164 traces = [] 165 166 for (i, y) in enumerate(ys): 167 kwargs = {} 168 if names: 169 kwargs['name'] = names[i] 170 if error_ys: 171 kwargs['error_y'] = dict( 172 type='data', # or 'percent', 'sqrt', 'constant' 173 array=error_ys[i], # values of error bars 174 visible=True 175 ) 176 trace = go.Bar( 177 x = xs[i], 178 y = y, 179 **kwargs 180 ) 181 traces.append(trace) 182 183 data = traces 184 print 'data', data 185 186 fig = go.Figure(data=data, layout=layout) 187 # disp = iplot(fig, filename=datetime.now().strftime('%a, %d %b %Y %H:%M:%S +0000')) 188 disp = iplot(fig) # offline mode, no need for filename.
158 def plot_bars(): 159 ylim = plt.ylim() 160 for x in np.arange(0, t[-1], presentation_time): 161 plt.plot([x, x], ylim, 'k--')