Every line of 'initialize array in python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
13 def __init__(self, arr): 14 assert arr is not None 15 self.shape = arr.shape 16 self.array = arr 17 self.size = self.array.size
53 def __init__(self, size): 54 assert size > 0, "Array size must be > 0" 55 self._size = size 56 PyArrayType = ctypes.py_object * size 57 self._elements = PyArrayType() 58 self.clear(None)
97 def __init__(self, elemtype, *ignored): 98 '''Note: elemcount is ignored when using in the Python scope. 99 ''' 100 self.elemtype = elemtype
490 def __init__(self, array, on_shape_change='raise'): 491 """ 492 array is a numpy array of data. 493 on_shape_change is one of ('raise', 'pass', 'recompile'), and 494 determines the behaviour when the data is set to a new value with a 495 different shape 496 """ 497 super(DataHolder, self).__init__() 498 dtype = normalize_dtype(array) 499 self._array = np.asarray(array, dtype=dtype) 500 assert on_shape_change in ['raise', 'pass', 'recompile'] 501 self.on_shape_change = on_shape_change
301 def __init__(self, db, ARRAY, varlength=1): 302 self.db = db 303 self.ARRAY = ARRAY 304 self.LLTYPE = ARRAY 305 self.varlength = varlength 306 self.dependencies = {} 307 self.itemtypename = db.gettype(ARRAY.OF, who_asks=self)
17 def __init__(self, 18 *array: Union[np.ndarray, pd.DataFrame, pd.Series, 19 torch.Tensor], 20 dtypes: Union[None, Sequence[torch.dtype]] = None): 21 if dtypes is None: 22 dtypes = [torch.get_default_dtype()] * len(array) 23 if len(dtypes) != len(array): 24 raise ValueError('length of dtypes not equal to length of array') 25 26 array = [ 27 self._convert(data, dtype) for data, dtype in zip(array, dtypes) 28 ] 29 super().__init__(*array)
40 def init_array(C, A, B, alpha, beta): 41 n = N.get() 42 m = M.get() 43 44 alpha[0] = datatype(1.5) 45 beta[0] = datatype(1.2) 46 47 for i in range(m): 48 for j in range(n): 49 C[i, j] = datatype((i + j) % 100) / m 50 B[i, j] = datatype((n + i - j) % 100) / m 51 for i in range(m): 52 for j in range(i + 1): 53 A[i, j] = datatype((i + j) % 100) / m 54 for j in range(i + 1, m): 55 A[i, j] = -999 56 # regions of arrays that should not be used 57 58 print('aval', beta[0] * C[0, 0] + alpha[0] * B[0, 0] * A[0, 0])