How to use 'keras imagedatagenerator' in Python

Every line of 'keras imagedatagenerator' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
99def get_batches(dirname, gen=image.ImageDataGenerator(), shuffle=True, batch_size=4, class_mode='categorical',
100 target_size=(224,224)):
101 return gen.flow_from_directory(dirname, target_size=target_size,
102 class_mode=class_mode, shuffle=shuffle, batch_size=batch_size)
336def generator(data, batch_size=cfg.BATCH_SIZE):
337 num_records = len(data)
338
339 while True:
340 #shuffle again for good measure
341 shuffle(data)
342
343 for offset in range(0, num_records, batch_size):
344 batch_data = data[offset:offset+batch_size]
345
346 if len(batch_data) != batch_size:
347 break
348
349 b_inputs_img = []
350 b_inputs_imu = []
351 b_labels = []
352
353 for seq in batch_data:
354 inputs_img = []
355 labels = []
356 for record in seq:
357 #get image data if we don't already have it
358 if record['img_data'] is None:
359 record['img_data'] = np.array(Image.open(record['image_path']))
360
361 inputs_img.append(record['img_data'])
362 labels.append(seq[-1]['target_output'])
363
364 b_inputs_img.append(inputs_img)
365 b_labels.append(labels)
366
367 #X = [np.array(b_inputs_img), np.array(b_inputs_imu)]
368 X = [np.array(b_inputs_img)]
369 y = np.array(b_labels).reshape(batch_size, 2)
370
371 yield X, y

Related snippets