Every line of 'keras load model and predict' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
80 def load_model(): 81 """ 82 """ 83 84 json_file = open('multilabel_model.json', 'r') 85 loaded_model_json = json_file.read() 86 json_file.close() 87 model = model_from_json(loaded_model_json) 88 89 model.load_weights('multilabel_model.h5') 90 print("Loaded model from disk") 91 92 model.summary() 93 94 model.compile(loss='binary_crossentropy', 95 optimizer='adam', 96 metrics=[f1_score]) 97 98 99 return model
45 def load_model( 46 has_model: bool = True, model_path: str = f"{LATEST_STABLE_MODEL}" 47 ) -> LogisticRegression: 48 """ 49 Load or create the logistic regression model. 50 51 Returns: 52 A logistic regression model either created from scratch or 53 loaded from a pickle file 54 """ 55 # Load the model from memory or from a beautiful pickle file 56 if has_model: 57 lr_file = open(f"{ETC_DIR}/models/{model_path}", "rb") 58 model = pickle.load(lr_file) 59 lr_file.close() 60 LOGGER.info(f"Loaded model: {model_path}") 61 else: 62 lr_file = open(f"{ETC_DIR}/models/{model_path}", "wb") 63 model = create_lr() 64 pickle.dump(model, lr_file) 65 lr_file.close() 66 LOGGER.info(f"Created and saved: {model_path}") 67 68 return model
120 def load_pretrained_model(): 121 weathernet = keras.models.load_model(model_filepath) 122 return weathernet
58 def load(self, save_path): 59 self.classifier = keras.models.load_model(save_path)
43 def loaded_model(): 44 45 json_file = open('/Users/yang/ChemTS/RNN-model/model.json', 'r') 46 #json_file = open('/Users/yang/LSTM-chemical-project/protein-ligand/model.json', 'r') 47 loaded_model_json = json_file.read() 48 json_file.close() 49 loaded_model = model_from_json(loaded_model_json) 50 51 # load weights into new model 52 #loaded_model.load_weights('/Users/yang/LSTM-chemical-project/protein-ligand/model.h5') 53 loaded_model.load_weights('/Users/yang/ChemTS/RNN-model/model.h5') 54 print("Loaded model from disk") 55 56 57 return loaded_model
282 def load(model_name, img_dim, nb_patch, bn_mode, use_mbd, batch_size): 283 284 if model_name == "generator_unet_upsampling": 285 model = generator_unet_upsampling(img_dim, bn_mode, model_name=model_name) 286 model.summary() 287 return model 288 289 if model_name == "generator_unet_deconv": 290 model = generator_unet_deconv(img_dim, bn_mode, batch_size, model_name=model_name) 291 model.summary() 292 return model 293 294 if model_name == "DCGAN_discriminator": 295 model = DCGAN_discriminator(img_dim, nb_patch, bn_mode, model_name=model_name, use_mbd=use_mbd) 296 model.summary() 297 return model
175 def load_model(self): 176 print("BertBiLstmModel load_model start!") 177 # logger.info("BertBiLstmModel load_model start!") 178 self.model.load_weights(args.path_save_model) 179 # logger.info("BertBiLstmModel load_model end+!") 180 print("BertBiLstmModel load_model end+!")
207 def load(path, opts, vars): 208 try: 209 print('\nLoading model\nCreating session and graph') 210 server = tf.train.Server.create_local_server() 211 sess = tf.Session(server.target) 212 graph = tf.get_default_graph() 213 backend.set_session(sess) 214 215 model_path = path + '.' + opts['network'] + '.h5' 216 print('Loading model from {}'.format(model_path)) 217 model = load_model(model_path); 218 219 220 print('Create prediction function') 221 222 model._make_predict_function() 223 with graph.as_default(): 224 with sess.as_default(): 225 input_shape = list(model.layers[0].input_shape) 226 input_shape[0] = 1 227 model.predict(np.zeros(tuple(input_shape))) 228 229 vars['graph'] = graph 230 vars['session'] = sess 231 vars['model'] = model 232 except Exception as e: 233 print_exception(e, 'load') 234 sys.exit()
535 def load_model_and_predict(self): 536 # load model 537 print('loading model ' + self.file_name + '.h5...') 538 model = load_model(os.path.join(self.file_path, 'model_' + self.file_name + '-' + 'seq_' + str(self.n_seq) + '.h5')) 539 # load dataset 540 series, series_values, raw_datetime = self.load_dataset() 541 # In order to make fake data, we need to random shuffle the values 542 # series, series_values = self._random_shuffle(series) 543 # n_test = int(0.2 * series.shape[0]) 544 n_test = 30 545 scaler, train, test = self.prepare_data(series_values, n_test, self.n_lag, self.n_seq) 546 # make a prediction 547 forecasts = self.make_forecasts(model, self.n_batch, test, self.n_lag, self.n_seq) 548 # inverse transform forecasts and test pyplot.show() 549 550 forecasts = self.inverse_transform(series_values, forecasts, scaler, n_test + self.n_seq - 1) 551 # map forecasts to a health score 552 # self.get_health_score(raw_datetime, forecasts, n_test) 553 554 actual = [row[self.n_lag:] for row in test] 555 actual = self.inverse_transform(series_values, actual, scaler, n_test + self.n_seq - 1) 556 # evaluate forecasts 557 self.evaluate_forecasts(actual, forecasts, self.n_lag, self.n_seq, self.file_name) 558 # plot forecasts 559 # self.plot_forecasts(series_values, forecasts, n_test, self.file_name, self.sensor_name, raw_datetime, self.n_seq) 560 self._plot(series_values, forecasts, n_test, self.file_name, self.sensor_name, raw_datetime, self.n_seq)
50 def load_model(self): 51 depth=Input(shape=(TIME_STEPS,hd,wd,1),name='depth_flow') 52 opflow=Input(shape=(TIME_STEPS,ho,wo,2),name='optical_flow') 53 cnv1=TimeDistributed(Conv2D(64, (7,7),strides=2, padding='same',dilation_rate=(1, 1), activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros',kernel_regularizer=regularizers.l2(0.01),bias_regularizer=regularizers.l2(0.01),activity_regularizer=regularizers.l2(0.01)))(depth) 54 cnv1_2=TimeDistributed(Conv2D(64, (7,7),strides=2, padding='same',dilation_rate=(1, 1), activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros',kernel_regularizer=regularizers.l2(0.01),bias_regularizer=regularizers.l2(0.01),activity_regularizer=regularizers.l2(0.01)))(cnv1) 55 cnv2=TimeDistributed(Conv2D(128, (5,5),strides=2, padding='same',dilation_rate=(1, 1), activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros',kernel_regularizer=regularizers.l2(0.01),bias_regularizer=regularizers.l2(0.01),activity_regularizer=regularizers.l2(0.01)))(opflow) 56 cnv2_2=TimeDistributed(Conv2D(128, (5,5),strides=2, padding='same',dilation_rate=(1, 1), activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros',kernel_regularizer=regularizers.l2(0.01),bias_regularizer=regularizers.l2(0.01),activity_regularizer=regularizers.l2(0.01)))(cnv2) 57 merged=concatenate([cnv1_2,cnv2_2]) 58 cnv3=TimeDistributed(Conv2D(256, (5,5),strides=2, padding='same',dilation_rate=(1, 1), activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros',kernel_regularizer=regularizers.l2(0.01),bias_regularizer=regularizers.l2(0.01),activity_regularizer=regularizers.l2(0.01)))(merged) 59 cnv3_1=TimeDistributed(Conv2D(256, (3,3),strides=1, padding='same',dilation_rate=(1, 1), activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros',kernel_regularizer=regularizers.l2(0.01),bias_regularizer=regularizers.l2(0.01),activity_regularizer=regularizers.l2(0.01)))(cnv3) 60 cnv4=TimeDistributed(Conv2D(512, (3,3),strides=2, padding='same',dilation_rate=(1, 1), activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros',kernel_regularizer=regularizers.l2(0.01),bias_regularizer=regularizers.l2(0.01),activity_regularizer=regularizers.l2(0.01)))(cnv3_1) 61 cnv4_1=TimeDistributed(Conv2D(512, (3,3),strides=1, padding='same',dilation_rate=(1, 1), activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros',kernel_regularizer=regularizers.l2(0.01),bias_regularizer=regularizers.l2(0.01),activity_regularizer=regularizers.l2(0.01)))(cnv4) 62 cnv5=TimeDistributed(Conv2D(512, (3,3),strides=2, padding='same',dilation_rate=(1, 1), activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros',kernel_regularizer=regularizers.l2(0.01),bias_regularizer=regularizers.l2(0.01),activity_regularizer=regularizers.l2(0.01)))(cnv4_1) 63 cnv5_1=TimeDistributed(Conv2D(512, (3,3),strides=1, padding='same',dilation_rate=(1, 1), activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros',kernel_regularizer=regularizers.l2(0.01),bias_regularizer=regularizers.l2(0.01),activity_regularizer=regularizers.l2(0.01)))(cnv5) 64 cnv6=TimeDistributed(Conv2D(1024, (3,3),strides=2, padding='same',dilation_rate=(1, 1), activation='relu', use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros',kernel_regularizer=regularizers.l2(0.01),bias_regularizer=regularizers.l2(0.01),activity_regularizer=regularizers.l2(0.01)))(cnv5_1) 65 drp_1=TimeDistributed(Dropout(0.5))(cnv6) 66 flat=TimeDistributed(Flatten())(drp_1) 67 lstm1=LSTM(LSTM_HIDDEN_SIZE,return_sequences=True)(flat) 68 lstm2=LSTM(6,return_sequences=True,name='output')(lstm1) 69 self.model=Model(inputs=[depth,opflow],outputs=[lstm2]) 70 adm = keras.optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False) 71 self.model.compile(optimizer=adm, 72 loss=self.loss_modified) 73 self.model.summary() 74 if(not os.path.isdir(self.checkpoint_dir)): 75 os.makedirs(self.checkpoint_dir)