3 examples of 'keras plot model' in Python

Every line of 'keras plot model' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
46def save_model_graph(self):
47 plot_model(self.Discriminator, to_file='/data/Discriminator_Model.png')
25def visualize_model():
26 model = load_model('shallowCNN_model.h5') #See 'How to export keras models?' to generate this file before loading it.
27 # plot_model(model, to_file='shallowCNN_model.png')
28 model.summary()
131def train(self, x_data):
132 x_data, x_data = super().train(x_data, x_data)
133
134 x_mu_std = np.vstack((np.median(x_data), np.std(x_data)))
135 np.save(self.fullfilepath + 'meanstd_x.npy', x_mu_std)
136 x_data -= x_mu_std[0]
137 x_data /= x_mu_std[1]
138
139 csv_logger = CSVLogger(self.fullfilepath + 'log.csv', append=True, separator=',')
140
141 if self.task == 'classification':
142 raise RuntimeError('astroNN VAE does not support classification task')
143
144 reduce_lr = ReduceLROnPlateau(monitor='loss', factor=0.5, epsilon=self.reduce_lr_epsilon,
145 patience=self.reduce_lr_patience, min_lr=self.reduce_lr_min, mode='min',
146 verbose=2)
147 self.compile()
148 self.plot_model()
149
150 training_generator = DataGenerator(x_data.shape[1], self.batch_size).generate(x_data)
151
152 self.keras_model.fit_generator(generator=training_generator, steps_per_epoch=x_data.shape[0] // self.batch_size,
153 epochs=self.max_epochs, max_queue_size=20, verbose=2, workers=os.cpu_count(),
154 callbacks=[reduce_lr, csv_logger])
155
156 astronn_model = 'model_weights.h5'
157 self.keras_vae.save_weights(self.fullfilepath + astronn_model)
158 print(astronn_model + ' saved to {}'.format(self.fullfilepath + astronn_model))
159
160 K.clear_session()
161
162 return None

Related snippets