Every line of 'keras.utils.to_categorical' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
20 def to_categorical(y, n_class): 21 return keras.utils.to_categorical(y, n_class)
165 def to_categorical(y, nb_classes): 166 """Convert class vector to binary class matrix. 167 168 If the input ``y`` has shape (``nb_samples``,) and contains integers from 0 169 to ``nb_classes``, the output array will be of dimension 170 (``nb_samples``, ``nb_classes``). 171 """ 172 173 y = np.asarray(y, dtype='int32') 174 y_cat = np.zeros((len(y), nb_classes)) 175 for i in range(len(y)): 176 y_cat[i, y[i]] = 1. 177 return y_cat
35 def _to_categorical(x, n_classes): 36 x = np.array(x, dtype=int).ravel() 37 n = x.shape[0] 38 ret = np.zeros((n, n_classes)) 39 ret[np.arange(n), x] = 1 40 return ret
137 def to_categorical(y, nb_classes=None): 138 y = np.asarray(y, dtype='int32') 139 140 if not nb_classes: 141 nb_classes = np.max(y) + 1 142 143 Y = np.zeros((len(y), nb_classes)) 144 for i in range(len(y)): 145 Y[i, y[i]] = 1. 146 147 return Y
27 def preprocess_dataset_labels(y): # Do not preprocess labels here! => it's done in another script 28 y = to_categorical(y, num_classes) 29 return y