Every line of 'knn sklearn' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
169 def predict_knn(X_train, X_test, y_train, y_test): 170 clf=knn(n_neighbors=3) 171 print("knn started") 172 clf.fit(X_train,y_train) 173 y_pred=clf.predict(X_test) 174 calc_accuracy("K nearest neighbours",y_test,y_pred) 175 np.savetxt('submission_surf_knn.csv', np.c_[range(1,len(y_test)+1),y_pred,y_test], delimiter=',', header = 'ImageId,Label,TrueLabel', comments = '', fmt='%d')
24 def trainKNN(trainData,trainLabel): 25 knn = neighbors.KNeighborsClassifier(n_neighbors=3,algorithm='ball_tree') 26 #print(type(trainData)) 27 return knn.fit(trainData,trainLabel)
35 def skl_knn(self, k): 36 """k: number of neighbors to use in classification 37 test_data: the data/targets used to test the classifier 38 stored_data: the data/targets used to classify the test_data 39 """ 40 fifty_x, fifty_y = self.mk_dataset(50000) 41 test_img = [self.data[i] for i in self.indx[60000:70000]] 42 test_img1 = np.array(test_img) 43 test_target = [self.target[i] for i in self.indx[60000:70000]] 44 test_target1 = np.array(test_target) 45 self.classifier.fit(fifty_x, fifty_y) 46 47 y_pred = self.classifier.predict(test_img1) 48 pickle.dump(self.classifier, open('knn.sav', 'wb')) 49 print(classification_report(test_target1, y_pred)) 50 print("KNN Classifier model saved as knn.sav!")
221 def __init__(self, X, Y): 222 ''' 223 :param X: 224 :param Y: 225 ''' 226 self.model = KNeighborsClassifier(n_neighbors=3) 227 self.X = X 228 self.Y = Y