Every line of 'l2 regularization pytorch' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
56 def get_regularization(self, l): 57 y = [] 58 59 for block, is_const in zip(self._blocks, self._const_params): 60 if not is_const: 61 y.append(block.get_regularization(l)) 62 63 return sum(y)
17 def regularization_loss(self): 18 return self.regularization_loss
259 def _L2_reg(self, lambda_, w1, w2): 260 """Compute L2-regularization cost""" 261 return (lambda_/2.0) * (np.sum(w1[:, 1:] ** 2) + np.sum(w2[:, 1:] ** 2))
14 def L2(tensor, wd=0.001): 15 """ L2. 16 17 Computes half the L2 norm of a tensor without the `sqrt`: 18 19 output = sum(t ** 2) / 2 * wd 20 21 Arguments: 22 tensor: `Tensor`. The tensor to apply regularization. 23 wd: `float`. The decay. 24 25 Returns: 26 The regularization `Tensor`. 27 28 """ 29 return tf.multiply(tf.nn.l2_loss(tensor), wd, name='L2-Loss')
29 @property 30 def l2_loss(self): 31 """ Compute l2 loss if weight_decay is desired """ 32 if self.l2_regularizer is not None: 33 return tf.losses.get_regularization_loss(scope=self.name, name=self.name + 'l2_loss')
8 def l21(parameter, bias=None, reg=0.01, lr=0.1): 9 """L21 Regularization""" 10 11 if bias is not None: 12 w_and_b = torch.cat((parameter, bias.unfold(0,1,1)),1) 13 else: 14 w_and_b = parameter 15 L21 = reg # lambda: regularization strength 16 Norm = (lr*L21/w_and_b.norm(2, dim=1)) 17 if Norm.is_cuda: 18 ones = torch.ones(w_and_b.size(0), device=torch.device("cuda")) 19 else: 20 ones = torch.ones(w_and_b.size(0), device=torch.device("cpu")) 21 l21T = 1.0 - torch.min(ones, Norm) 22 update = (parameter*(l21T.unsqueeze(1))) 23 parameter.data = update 24 # Update bias 25 if bias is not None: 26 update_b = (bias*l21T) 27 bias.data = update_b