Every line of 'load csv file in python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
149 def load_from_csv(language, delimiter=','): 150 ''' Parse mapping from csv 151 ''' 152 work_sheet = [] 153 with open(language, encoding='utf8') as f: 154 reader = csv.reader(f, delimiter=delimiter) 155 for line in reader: 156 work_sheet.append(line) 157 # Create wordlist 158 mapping = [] 159 # Loop through rows in worksheet, create if statements for different columns 160 # and append mappings to self.mapping. 161 for entry in work_sheet: 162 new_io = {"in": "", "out": "", 163 "context_before": "", "context_after": ""} 164 new_io['in'] = entry[0] 165 new_io['out'] = entry[1] 166 try: 167 new_io['context_before'] = entry[2] 168 except IndexError: 169 new_io['context_before'] = '' 170 try: 171 new_io['context_after'] = entry[3] 172 except IndexError: 173 new_io['context_after'] = '' 174 for k in new_io: 175 if isinstance(new_io[k], float) or isinstance(new_io[k], int): 176 new_io[k] = str(new_io[k]) 177 mapping.append(new_io) 178 179 return mapping
51 def load_csv_file(csv_file_path): 52 lines = get_lines_from_csv_file(csv_file_path) 53 54 scores = [] 55 for line in lines[1:]: 56 begin = 0 57 for strategy in STRATEGIES: 58 score = [strategy] + map(int, line[begin: begin + 4]) 59 begin += 4 60 scores.append(score) 61 62 return scores, CLASSIFICATIONS
6 def load_csv(data): 7 sio = StringIO(data) 8 return list(unicodecsv.DictReader(sio, encoding="utf-8"))
50 def load_csv(file): 51 flair_dict = [] 52 print "start" 53 with open(file) as flair: 54 for line in flair: 55 username, flair_css, flair_text = line.rstrip().split(',') 56 print("Setting username: \'" + username + "\' to flair_css_class: \'" + flair_css + "\' and flair_text to: \'" + flair_text + "\'") 57 i = { 58 'user': username, 59 'flair_css_class': flair_css, 60 'flair_text': flair_text, 61 } 62 flair_dict.append(i) 63 64 return flair_dict
23 def load_csv_data(csv_file): 24 import csv 25 categories = [] 26 comments = [] 27 with open(csv_file, 'rb') as raw_dataset: 28 dataset_reader = csv.reader(raw_dataset, delimiter=',') 29 next(dataset_reader, None) # Filter Header 30 for row in dataset_reader: 31 categories.append(int(row[0])) 32 comments.append(preprocess_comment(row[2])) 33 return categories, comments
77 def load_file(file, relevant): # FIXME: must rewrite 78 reader = csv.reader(open(file)) 79 80 headings = reader.next() 81 columns_to_keep = [headings.index(col) for col in relevant] 82 83 objects = [] 84 for row in reader: 85 #print row[1] 86 data = [] 87 for ix in columns_to_keep: 88 try: 89 data.append(row[ix]) 90 except IndexError: 91 data.append(None) # we don't have a value 92 objects.append(data) 93 94 return objects
15 def _load(self): 16 logger.debug(f'load csv from {self.path}') 17 self.df = pd.read_csv(self.path) 18 logger.debug(f'load csv from {self.path} success')
102 def load(self): 103 for tbl in Gtfs.TABLES: 104 setattr(Gtfs, tbl['getter'], self.make_getter(tbl['obj'], tbl['table'], optional=tbl.get('optional'))) 105 return self
146 def get_data_from_file(csv_content, files): 147 # Get description or fix from the file reference parsed in JsonToCsv class 148 data = '' 149 number_from_file = re.search('\d+', csv_content) 150 if not number_from_file: 151 return data 152 else: 153 file_number = number_from_file.group() 154 155 if file_number in files['filenames']: 156 filename = files['filenames'][file_number] 157 else: 158 return data 159 160 with open(path.join(files['path'], filename)) as file_object: 161 data = file_object.read() 162 163 return data
39 @staticmethod 40 def load_csv(filepath): 41 """Load .csv file into a dataframe object. 42 43 Arguments: 44 filepath {String} -- Path to source file. 45 46 Returns: 47 DataFrame -- Returns a dataframe object. 48 """ 49 return pd.read_csv(filepath, encoding="utf-8")