Every line of 'load model keras' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
80 def load_model(): 81 """ 82 """ 83 84 json_file = open('multilabel_model.json', 'r') 85 loaded_model_json = json_file.read() 86 json_file.close() 87 model = model_from_json(loaded_model_json) 88 89 model.load_weights('multilabel_model.h5') 90 print("Loaded model from disk") 91 92 model.summary() 93 94 model.compile(loss='binary_crossentropy', 95 optimizer='adam', 96 metrics=[f1_score]) 97 98 99 return model
43 def loaded_model(): 44 45 json_file = open('/Users/yang/ChemTS/RNN-model/model.json', 'r') 46 #json_file = open('/Users/yang/LSTM-chemical-project/protein-ligand/model.json', 'r') 47 loaded_model_json = json_file.read() 48 json_file.close() 49 loaded_model = model_from_json(loaded_model_json) 50 51 # load weights into new model 52 #loaded_model.load_weights('/Users/yang/LSTM-chemical-project/protein-ligand/model.h5') 53 loaded_model.load_weights('/Users/yang/ChemTS/RNN-model/model.h5') 54 print("Loaded model from disk") 55 56 57 return loaded_model
140 def load(self, model_folder='./model/'): 141 # load json and create model 142 json_file = open(model_folder + 'model.json', 'r') 143 loaded_model_json = json_file.read() 144 json_file.close() 145 loaded_model = model_from_json(loaded_model_json) 146 # load weights into new model 147 loaded_model.load_weights(model_folder + 'model.h5') 148 print('Loaded model from disk') 149 150 self.model = loaded_model 151 # loaded model should be compiled 152 self.__compile() 153 self.load_activation_model()
58 def load(self, save_path): 59 self.classifier = keras.models.load_model(save_path)
120 def load_pretrained_model(): 121 weathernet = keras.models.load_model(model_filepath) 122 return weathernet
111 def load_best_model(self): 112 print('Logging Info - Loading model checkpoint: %s.hdf5\n' % self.config.exp_name) 113 self.load_model(os.path.join(self.config.checkpoint_dir, '{}.hdf5'.format(self.config.exp_name))) 114 print('Logging Info - Model loaded')
103 def _load_model(self): 104 ''' 105 Loads the model weights from disk. Prepares the model to be able to 106 make predictions. 107 ''' 108 self.logger.info( 109 'Loading model weights from {}'.format(self.model_filepath)) 110 self.model = load_model(self.model_filepath) 111 self.graph = tf.get_default_graph()
4 def ModelLoader(model_file): 5 print("Loading pre-trained model") 6 custom_objects = {'weighted_dice_coefficient_loss': weighted_dice_coefficient_loss} 7 try: 8 from keras_contrib.layers import InstanceNormalization 9 custom_objects["InstanceNormalization"] = InstanceNormalization 10 except ImportError: 11 pass 12 try: 13 return load_model(model_file, custom_objects=custom_objects) 14 except ValueError as error: 15 if 'InstanceNormalization' in str(error): 16 raise ValueError(str(error) + "\n\nPlease install keras-contrib to use InstanceNormalization:\n" 17 "'pip install git+https://www.github.com/keras-team/keras-contrib.git'") 18 else: 19 raise error
175 def load_model(self): 176 print("BertBiLstmModel load_model start!") 177 # logger.info("BertBiLstmModel load_model start!") 178 self.model.load_weights(args.path_save_model) 179 # logger.info("BertBiLstmModel load_model end+!") 180 print("BertBiLstmModel load_model end+!")
282 def load(model_name, img_dim, nb_patch, bn_mode, use_mbd, batch_size): 283 284 if model_name == "generator_unet_upsampling": 285 model = generator_unet_upsampling(img_dim, bn_mode, model_name=model_name) 286 model.summary() 287 return model 288 289 if model_name == "generator_unet_deconv": 290 model = generator_unet_deconv(img_dim, bn_mode, batch_size, model_name=model_name) 291 model.summary() 292 return model 293 294 if model_name == "DCGAN_discriminator": 295 model = DCGAN_discriminator(img_dim, nb_patch, bn_mode, model_name=model_name, use_mbd=use_mbd) 296 model.summary() 297 return model