Every line of 'longest increasing subsequence python' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
50 def longest_increasing_subsequence(a, verbose=False): 51 52 s = a[:] 53 s.sort() 54 55 (cost, alignment) = lcs(a, s) 56 57 if verbose: 58 print 59 print "input: ", a 60 print "sorted: ", s 61 62 print 'cost:', cost 63 print 64 for (a,b) in alignment: 65 print ' %16s => %s' % (a,b) 66 print 67 68 return [a for (a,b) in alignment if a is not None and b is not None]
Secure your code as it's written. Use Snyk Code to scan source code in minutes – no build needed – and fix issues immediately. Enable Snyk Code
10 def longestCommonSubsequence(self, A, B): 11 """ 12 let f(i, j) represents the LCS END WITH A[i], B[j] 13 f(i, j) = f(i-1, j-1)+1, if A[i] == A[j] 14 f(i, j) = max{f(i-1, j), f(i, j-1)}, otherwise 15 16 :param A: str 17 :param B: str 18 :return: The length of longest common subsequence of A and B. 19 """ 20 m = len(A) 21 n = len(B) 22 f = [[0 for _ in xrange(n+1)] for _ in xrange(m+1)] 23 24 if m == 0 or n == 0: 25 return 0 26 27 for i in xrange(1, m+1): 28 for j in xrange(1, n+1): 29 if A[i-1] == B[j-1]: 30 f[i][j] = f[i-1][j-1]+1 31 else: 32 f[i][j] = max(f[i][j-1], f[i-1][j]) 33 34 return f[-1][-1]
2 def longestPalindromeSubseq(self, s: str) -> int: 3 n = len(s) 4 dp = [[0 for _ in range(n)] for _ in range(n)] 5 for i in range(n - 1, -1, -1): 6 dp[i][i] = 1 7 for j in range(i + 1, n): 8 if s[i] == s[j]: 9 dp[i][j] = dp[i + 1][j - 1] + 2 10 else: 11 dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]) 12 return dp[0][n - 1]
6 def longestConsecutive(self, nums): 7 """ 8 :type nums: List[int] 9 :rtype: int 10 """ 11 visited = set() 12 for num in nums: 13 visited.add(num) 14 15 max_len = 0 16 for num in nums: 17 if num - 1 not in visited: 18 curr = 0 19 item = num 20 while item in visited: 21 curr += 1 22 item += 1 23 max_len = max(max_len, curr) 24 return max_len
37 def longestCommonPrefix(self, array): 38 if array is None or len(array) == 0: 39 return '' 40 41 if len(array) == 1: 42 return array[0] 43 44 half = len(array) / 2 45 longest_left = self.longestCommonPrefix(array[:half]) 46 longest_right = self.longestCommonPrefix(array[half:]) 47 48 min_length = min(len(longest_left), len(longest_right)) 49 for index in xrange(min_length): 50 if longest_left[index] != longest_right[index]: 51 return longest_left[:index] 52 53 return longest_left[:min_length]
47 def longestConsecutive(self, nums): 48 """ 49 :type nums: list[int] 50 :rtype: int 51 """ 52 ans = 0 53 54 if not nums: 55 return ans 56 57 nums.sort() 58 59 size = 1 60 61 for i in range(1, len(nums)): 62 if nums[i] == nums[i - 1]: 63 continue 64 65 if nums[i] == nums[i - 1] + 1: 66 size += 1 67 else: 68 size = 1 69 70 if size > ans: 71 ans = size 72 73 return ans if ans > 0 else size
2 def longestCommonPrefix(self, strs): 3 """ 4 :type strs: List[str] 5 :rtype: str 6 """ 7 if len(strs) == 0: 8 return "" 9 i = 0 10 j = 0 11 end = 0 12 while j < len(strs) and i < len(strs[j]): 13 if j == 0: 14 char = strs[j][i] 15 else: 16 if strs[j][i] != char: 17 break 18 19 if j == len(strs) - 1: 20 i += 1 21 j = 0 22 end += 1 23 else: 24 j += 1 25 26 return strs[j][:end]
8 def longestCommonPrefix(self, strs): 9 if not strs: return "" 10 l = min(map(len, strs)) 11 i = 0 12 while i < l: 13 char = strs[0][i] 14 for s in strs: 15 if s[i] != char: 16 return strs[0][:i] 17 18 i += 1 19 20 return strs[0][:i]
2 def lengthOfLongestSubstring(self, s): 3 result = 0 4 left = 0 5 last = {} 6 for i in range(len(s)): 7 if s[i] in last and left <= last[s[i]]: 8 left = last[s[i]] + 1 9 last[s[i]] = i 10 result = max(result, i - left + 1) 11 return result
57 def lengthOfLongestSubstring(self, s): 58 # https://leetcode.com/articles/longest-substring-without-repeating-characters/ 59 charMap = {} 60 for i in range(256): 61 charMap[i] = -1 62 ls = len(s) 63 i = max_len = 0 64 for j in range(ls): 65 # Note that when charMap[ord(s[j])] >= i, it means that there are 66 # duplicate character in current i,j. So we need to update i. 67 if charMap[ord(s[j])] >= i: 68 i = charMap[ord(s[j])] + 1 69 charMap[ord(s[j])] = j 70 max_len = max(max_len, j - i + 1) 71 return max_len