10 examples of 'matplotlib resize image' in Python

Every line of 'matplotlib resize image' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
34def imresize(im, h, w):
35 if im.shape[:2] == (h, w):
36 return im
37
38 # This has problems re-reading a numpy array if it's not 8-bit anymore.
39 assert im.max() > 1, "PIL has problems resizing images after they've been changed to e.g. [0-1] range. Either install OpenCV or resize right after reading the image."
40 img = _Image.fromarray(im.astype(_np.uint8))
41 return _np.array(img.resize((w,h), _Image.BILINEAR), dtype=im.dtype)
34def resize_image(image, size, mode=None):
35 return misc.imresize(image, size=size, mode=mode)
38def image_resize(image, width = None, height = None, inter = cv2.INTER_AREA):
39 # ref: https://stackoverflow.com/questions/44650888/resize-an-image-without-distortion-opencv
40
41 # initialize the dimensions of the image to be resized and
42 # grab the image size
43 dim = None
44 (h, w) = image.shape[:2]
45
46 # if both the width and height are None, then return the
47 # original image
48 if width is None and height is None:
49 return image
50
51 # check to see if the width is None
52 if width is None:
53 # calculate the ratio of the height and construct the
54 # dimensions
55 r = height / float(h)
56 dim = (int(w * r), height)
57
58 # otherwise, the height is None
59 else:
60 # calculate the ratio of the width and construct the
61 # dimensions
62 r = width / float(w)
63 dim = (width, int(h * r))
64
65 # resize the image
66 resized = cv2.resize(image, dim, interpolation = inter)
67
68 # return the resized image
69 return resized
28@curry
29def resize(pil_img, size, interpolation=Image.BILINEAR):
30 return pil_img.resize(size, interpolation)
141def resize(self, width, height, resample_algorithm=nearest, resize_canvas=True):
142 pixels = resample_algorithm.resize(
143 self, width, height, resize_canvas=resize_canvas
144 )
145 return self._copy(pixels)
29def imresize(img, size, return_scale=False, interpolation='bilinear'):
30 """Resize image to a given size.
31
32 Args:
33 img (ndarray): The input image.
34 size (tuple): Target (w, h).
35 return_scale (bool): Whether to return `w_scale` and `h_scale`.
36 interpolation (str): Interpolation method, accepted values are
37 "nearest", "bilinear", "bicubic", "area", "lanczos".
38
39 Returns:
40 tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or
41 `resized_img`.
42 """
43 h, w = img.shape[:2]
44 resized_img = cv2.resize(
45 img, size, interpolation=interp_codes[interpolation])
46 if not return_scale:
47 return resized_img
48 else:
49 w_scale = size[0] / w
50 h_scale = size[1] / h
51 return resized_img, w_scale, h_scale
26def resize_image(image,w,h):
27 image=cv2.resize(image,(w,h))
28 cv2.imwrite(Folder_name+"/Resize-"+str(w)+"*"+str(h)+Extension, image)
33def _resize_pil(img, size, interpolation):
34 C = img.shape[0]
35 H, W = size
36 out = np.empty((C, H, W), dtype=img.dtype)
37 for ch, out_ch in zip(img, out):
38 ch = PIL.Image.fromarray(ch, mode='F')
39 out_ch[:] = ch.resize((W, H), resample=interpolation)
40 return out
44def resize_img(img, size, interpolation=PIL.Image.BILINEAR):
45 """Resize image to match the given shape.
46
47 This method uses :mod:`cv2` or :mod:`PIL` for the backend.
48 If :mod:`cv2` is installed, this legacy uses the implementation in
49 :mod:`cv2`. This implementation is faster than the implementation in
50 :mod:`PIL`. Under Anaconda environment,
51 :mod:`cv2` can be installed by the following command.
52
53 .. code::
54
55 $ conda install -c menpo opencv3=3.2.0
56
57 Args:
58 img (~numpy.ndarray): An array to be transformed.
59 This is in CHW format and the type should be :obj:`numpy.float32`.
60 size (tuple): This is a tuple of length 2. Its elements are
61 ordered as (height, width).
62 interpolation (int): Determines sampling strategy. This is one of
63 :obj:`PIL.Image.NEAREST`, :obj:`PIL.Image.BILINEAR`,
64 :obj:`PIL.Image.BICUBIC`, :obj:`PIL.Image.LANCZOS`.
65 Bilinear interpolation is the default strategy.
66
67 Returns:
68 ~numpy.ndarray: A resize array in CHW format.
69
70 """
71 img = _resize(img, size, interpolation)
72 return img
676def apply_resize(image, resize_param):
677 assert isinstance(resize_param.interp_mode, (list, tuple))
678
679 interp_mode = cv2.INTER_LINEAR
680 num_interp_mode = len(resize_param.interp_mode)
681 if num_interp_mode > 0:
682 probs = [1. / num_interp_mode] * num_interp_mode
683 cumulative = np.cumsum(probs)
684 val = random.uniform(0, cumulative[-1])
685 prob_num = bisect.bisect_left(cumulative, val)
686 interp_mode = resize_param.interp_mode[prob_num]
687
688 if resize_param.resize_mode == ResizeParameter.WARP:
689 return cv2.resize(image, dsize=(resize_param.width, resize_param.height), interpolation=interp_mode)
690 elif resize_param.resize_mode == ResizeParameter.FIT_LARGE_SIZE_AND_PAD:
691 return aspect_keeping_resize_and_pad(image, resize_param.width, resize_param.height, resize_param.pad_mode,
692 resize_param.pad_val, interp_mode)
693 elif resize_param.resize_mode == ResizeParameter.FIT_SMALL_SIZE:
694 return aspect_keeping_resize_by_small(image, resize_param.width, resize_param.height, interp_mode)
695 raise Exception()

Related snippets