Every line of 'merge in pandas' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
29 def _concat(df, type): 30 if df is None: 31 df = pd.DataFrame(_object_blocks[type]) 32 else: 33 _df = pd.DataFrame(_object_blocks[type]) 34 df = pd.concat([df, _df], sort=True) 35 return df
332 def merge_datasets(self, other): 333 """ 334 This operation combines two dataframes into one new DataFrame. 335 If the operation is combining two SpatialDataFrames, the 336 geometry_type must match. 337 """ 338 if isinstance(other, SpatialDataFrame) and \ 339 other.geometry_type == self.geometry_type: 340 return pd.concat(objs=[self, other], axis=0) 341 elif isinstance(other, DataFrame): 342 return pd.concat(objs=[self, other], axis=0) 343 elif isinstance(other, Series): 344 self['merged_datasets'] = other 345 elif isinstance(other, SpatialDataFrame) and \ 346 other.geometry_type != self.geometry_type: 347 raise ValueError("Spatial DataFrames must have the same geometry type.") 348 else: 349 raise ValueError("Merge datasets cannot merge types %s" % type(other))
6 def default_merger(x, y): 7 import pandas as pd 8 return pd.concat([x, y])
813 def merge(old_cols, new_cols): 814 return old_cols + new_cols
142 def append_data(df1, df2): 143 ''' 144 Append df2 to df1 145 ''' 146 df = pd.concat((df1, df2)) 147 return df.groupby(df.index).first()
51 def random_merge(A, B, N=20, on='AnswerId', key='key', n='n'): 52 """Pair all rows of A with 1 matching row on "on" and N-1 random rows from B 53 """ 54 assert key not in A and key not in B 55 X = A.copy() 56 X[key] = A[on] 57 Y = B.copy() 58 Y[key] = B[on] 59 match = X.merge(Y, on=key).drop(key, axis=1) 60 match[n] = 0 61 df_list = [match] 62 for i in A.index: 63 X = A.loc[[i]] 64 Y = B[B[on] != X[on].iloc[0]].sample(N-1) 65 X[key] = 1 66 Y[key] = 1 67 Z = X.merge(Y, how='outer', on=key).drop(key, axis=1) 68 Z[n] = range(1, N) 69 df_list.append(Z) 70 df = pd.concat(df_list, ignore_index=True) 71 return df
474 def full_merge_of_existing_series(old_series, new_series): 475 """ 476 Merges old data with new data. 477 Any Nan in the existing data will be replaced (be careful!) 478 479 :param old_data: pd.Series 480 :param new_data: pd.Series 481 482 :returns: pd.Series 483 """ 484 if len(old_series)==0: 485 return new_series 486 if len(new_series)==0: 487 return old_series 488 489 joint_data = pd.concat([old_series, new_series], axis=1) 490 joint_data.columns = ['original', 'new'] 491 492 # fill to the left 493 joint_data_filled_across = joint_data.bfill(1) 494 merged_data = joint_data_filled_across['original'] 495 496 return merged_data
88 def merge_lvj_dfs(df1, df2, how='outer'): 89 """ 90 Merge two data frames on lvj indices. 91 92 By default, uses the union of the keys (an "outer" join). 93 """ 94 merged = pd.merge(df1, df2, how=how, left_index=True, right_index=True) 95 merged.fillna(0, inplace=True) 96 return merged