Every line of 'merge multiple dataframes in pandas' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
813 def merge(old_cols, new_cols): 814 return old_cols + new_cols
57 def merge(left, right): 58 return left.merge(right, on=on, how=how, suffixes=(lsuffix, rsuffix))
332 def merge_datasets(self, other): 333 """ 334 This operation combines two dataframes into one new DataFrame. 335 If the operation is combining two SpatialDataFrames, the 336 geometry_type must match. 337 """ 338 if isinstance(other, SpatialDataFrame) and \ 339 other.geometry_type == self.geometry_type: 340 return pd.concat(objs=[self, other], axis=0) 341 elif isinstance(other, DataFrame): 342 return pd.concat(objs=[self, other], axis=0) 343 elif isinstance(other, Series): 344 self['merged_datasets'] = other 345 elif isinstance(other, SpatialDataFrame) and \ 346 other.geometry_type != self.geometry_type: 347 raise ValueError("Spatial DataFrames must have the same geometry type.") 348 else: 349 raise ValueError("Merge datasets cannot merge types %s" % type(other))
24 def _merge_dataframes(self, dataset_readers_list): 25 26 final_df = None 27 all_dfs = [] 28 keys = [] 29 30 for dataset, readers in dataset_readers_list: 31 dataset_df = readers[0] 32 for df in readers[1:]: 33 if df is None: 34 continue 35 dataset_df = dataset_df.add(df, fill_value=0.) 36 37 all_dfs.append(dataset_df) 38 keys.append(dataset) 39 40 final_df = pd.concat(all_dfs, keys=keys, names=['dataset'], sort=True) 41 42 return final_df.reset_index()
29 def _concat(df, type): 30 if df is None: 31 df = pd.DataFrame(_object_blocks[type]) 32 else: 33 _df = pd.DataFrame(_object_blocks[type]) 34 df = pd.concat([df, _df], sort=True) 35 return df
142 def append_data(df1, df2): 143 ''' 144 Append df2 to df1 145 ''' 146 df = pd.concat((df1, df2)) 147 return df.groupby(df.index).first()
6 def default_merger(x, y): 7 import pandas as pd 8 return pd.concat([x, y])
88 def merge_lvj_dfs(df1, df2, how='outer'): 89 """ 90 Merge two data frames on lvj indices. 91 92 By default, uses the union of the keys (an "outer" join). 93 """ 94 merged = pd.merge(df1, df2, how=how, left_index=True, right_index=True) 95 merged.fillna(0, inplace=True) 96 return merged
42 def merge_features(features, keep_partial_nan_rows=False): 43 """ 44 Combine dataframes of features which share a datetime index. 45 46 Parameters 47 ---------- 48 features : :any:`list` of :any:`pandas.DataFrame` 49 List of dataframes to be concatenated to share an index. 50 keep_partial_nan_rows : :any:`bool`, default False 51 If True, don't overwrite partial rows with NaN, otherwise any row with a NaN 52 value gets changed to all NaN values. 53 54 Returns 55 ------- 56 merged_features : :any:`pandas.DataFrame` 57 A single dataframe with the index of the input data and all of the columns 58 in the input feature dataframes. 59 """ 60 61 def _to_frame_if_needed(df_or_series): 62 if isinstance(df_or_series, pd.Series): 63 return df_or_series.to_frame() 64 return df_or_series 65 66 df = pd.concat([_to_frame_if_needed(feature) for feature in features], axis=1) 67 68 if not keep_partial_nan_rows: 69 df = overwrite_partial_rows_with_nan(df) 70 return df