Every line of 'multinomial' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
1890 @parse_args('v', 'i', 'b', 'v') 1891 def multinomial(g, input, num_samples, replacement=False, generator=None): 1892 if generator is not None and not generator.node().mustBeNone(): 1893 _unimplemented("Multinomial", "generator is not supported for multinomial") 1894 if not replacement and num_samples > 1: 1895 _unimplemented("Multinomial", "replacement=False when num_samples > 1 is not supported for multinomial") 1896 1897 log_input = log(g, input) 1898 return g.op("Multinomial", log_input, 1899 dtype_i=sym_help.cast_pytorch_to_onnx['Long'], 1900 sample_size_i=num_samples)
56 def conditional_multinomial(event, base, s): 57 """ 58 Parameters: 59 event: n*1 numpy array with integer values 60 observed values for an event variable 61 base: n*1 numpy array with integer values 62 observed values for a population variable 63 s: integer 64 the number of simulations 65 66 Returns: 67 : n*s numpy array 68 """ 69 m = int(event.sum()) 70 props = base*1.0/base.sum() 71 return np.random.multinomial(m, props, s).transpose()