4 examples of 'np random binomial' in Python

Every line of 'np random binomial' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
144def binomial(trials, p, shape=[]):
145 """binomial(trials, p) or binomial(trials, p, [n, m, ...]) returns array of binomially distributed random integers.
146
147 trials is the number of trials in the binomial distribution.
148 p is the probability of an event in each trial of the binomial distribution."""
149 if shape == []:
150 shape = None
151 return mt.binomial(trials, p, shape)
76def test_binomial(self):
77 assert self.rs.binomial(10, .5) >= 0
78 assert self.rs.binomial(1000, .5) >= 0
123def binomial(big, small):
124 '''
125 Get the binomial coefficient (big small).
126
127 This is used in combinatorical calculations. More information:
128 http://en.wikipedia.org/wiki/Binomial_coefficient
129 '''
130 if big == small:
131 return 1
132 if big < small:
133 return 0
134 else:
135 return (math.factorial(big) // math.factorial(big - small)
136 // math.factorial(small))
658def binomial_like(self, x, n, p, name='binomial', prior=False):
659 """Binomial log-likelihood"""
660
661 if not shape(n) == shape(p): raise ParameterError, 'Parameters must have same dimensions'
662
663 if ndim(n) > 1:
664
665 return sum([self.binomial_like(y, _n, _p, name, prior) for y, _n, _p in zip(x, n, p)])
666
667 else:
668
669 # Ensure valid values of parameters
670 self.constrain(p, 0, 1)
671 self.constrain(n, lower=x)
672 self.constrain(x, 0)
673
674 # Enforce array type
675 x = atleast_1d(x)
676 p = resize(p, shape(x))
677 n = resize(n, shape(x))
678
679 # Goodness-of-fit
680 if self._gof and not prior:
681
682 try:
683 self._like_names.append(name)
684 except AttributeError:
685 pass
686
687 expval = p * n
688
689 # Simulated values
690 y = array([rbinomial(_n, _p) for _n, _p in zip(n, p)])
691
692 # Generate GOF points
693 gof_points = sum(transpose([self.loss(x, expval), self.loss(y, expval)]))
694
695 self._gof_loss.append(gof_points)
696
697 return sum([fbinomial(xx, nn, pp) for xx, nn, pp in zip(x, n, p)])

Related snippets