Every line of 'numpy array to torch tensor' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
32 def to_torch(array): 33 if len(array.shape) == 4: 34 array = np.transpose(array, (0, 3, 1, 2)) 35 return torch.from_numpy(array).to(device).float()
26 def torch2numpy(X): 27 """Convert a torch float32 tensor to a numpy array, sharing the same memory. 28 """ 29 return X.detach().numpy()
396 def tensor_to_ndarray(tensor): 397 """ 398 Convert float tensor into numpy image 399 400 :param tensor: input tensor 401 :type tensor: torch.Tensor 402 :return: numpy image 403 :rtype: np.ndarray 404 """ 405 tensor_np = tensor.permute(1, 2, 0).cpu().numpy() 406 tensor_np = tensor_np.astype(np.float32) 407 tensor_np = (tensor_np * 255).astype(np.uint8) 408 return tensor_np
142 @staticmethod 143 def videos_to_numpy(tensor): 144 generated = tensor.transpose(0, 1, 2, 3, 4) 145 generated[generated < -1] = -1 146 generated[generated > 1] = 1 147 generated = (generated + 1) / 2 * 255 148 return generated.astype('uint8')
20 def to_torch(ndarray): 21 if type(ndarray).__module__ == 'numpy': 22 return torch.from_numpy(ndarray) 23 elif not torch.is_tensor(ndarray): 24 raise ValueError("Cannot convert {} to torch tensor".format(type(ndarray))) 25 return ndarray
46 def to_tensor(x, cuda=False): 47 if x.ndim == 4: 48 x = x.transpose([0, 3, 1, 2]) / 255.0 49 elif x.ndim == 5: 50 x = x.transpose([0, 1, 4, 2, 3]) / 255.0 51 else: 52 raise ValueError(f"Tensor dimension error: {x.dim()} != 4 or 5") 53 x = torch.as_tensor(x, dtype=torch.float32) 54 if cuda and torch.cuda.is_available(): 55 x = x.cuda() 56 return x
36 def to_torch(nparray): 37 tensor = torch.from_numpy(nparray).float().cuda() 38 return torch.autograd.Variable(tensor, requires_grad=False)
29 @staticmethod 30 def to_numpy(tensor): 31 if isinstance(tensor, cp.ndarray): 32 return cp.asnumpy(tensor) 33 return tensor
119 def array(self, arr, dtype=None): 120 """ make an array """ 121 if dtype is None: 122 dtype = torch.get_default_dtype() 123 return torch.tensor(arr, device="cpu", dtype=dtype)
50 def _tensor_to_cuda(x): 51 if x.is_cuda: 52 return x 53 else: 54 return x.cuda()