Every line of 'numpy pad 2d array' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
590 def pad(array): 591 return numpy.pad(array, ((0, 0), (0, 1)), "constant")
261 def _pad(self, arr, num_step): 262 """Pad sequence to full fit within network""" 263 264 size = len(arr) 265 pad_size = math.ceil(size / num_step) * num_step 266 arr_pad = np.zeros(pad_size) 267 arr_pad[:size] = arr 268 269 return arr_pad
27 def _pad(data, shape): 28 """Pad the data to the given shape with zeros. 29 30 Parameters 31 ---------- 32 data : 2-d ndarray 33 Input data 34 shape : (2,) tuple 35 36 """ 37 out = np.zeros(shape) 38 out[tuple(slice(0, n) for n in data.shape)] = data 39 return out
28 def _zero_pad(array, amount, axes=(1, 2)): 29 """ 30 .. todo:: 31 32 WRITEME 33 """ 34 if amount == 0: 35 return array 36 new_shape = [] 37 slices = [] 38 for i, s in enumerate(array.shape): 39 if i in axes: 40 new_shape.append(s + 2 * amount) 41 slices.append(slice(amount, -amount)) 42 else: 43 new_shape.append(s) 44 slices.append(slice(None)) 45 new_shape = tuple(new_shape) 46 slices = tuple(slices) 47 new_array = numpy.zeros(new_shape, dtype=array.dtype) 48 new_array[slices] = array 49 return new_array
25 def __call__(self, x): 26 if self.pre_pad: 27 return x 28 else: 29 np_pad = ((self.pad_size[0], self.pad_size[1]), (self.pad_size[2], self.pad_size[3])) 30 return np.pad(x, ((0,0), (0,0), np_pad[0], np_pad[1]), mode='reflect')
17 def prepad(vec, length, value=0): 18 if length > len(vec): 19 return np.r_[value * np.ones(length - len(vec)), vec] 20 elif length < len(vec): 21 return vec[-length:] 22 else: 23 return vec
288 def pad3d( data, nx, ny, nz ): 289 #create undersampling mask 290 datsize = data.shape 291 padsize = np.array(datsize) 292 padsize[0] = nx 293 padsize[1] = ny 294 padsize[2] = nz 295 ndata = np.zeros(tuple(padsize),dtype = data.dtype) 296 297 # center k-space index range 298 datrx = np.int(datsize[0]/2) 299 datry = np.int(datsize[1]/2) 300 datrz = np.int(datsize[2]/2) 301 cx = np.int(nx/2) 302 cy = np.int(ny/2) 303 cz = np.int(nz/2) 304 cxr = np.arange(round(cx-datrx),round(cx-datrx+datsize[0])) 305 cyr = np.arange(round(cy-datry),round(cy-datry+datsize[1])) 306 czr = np.arange(round(cz-datrz),round(cz-datrz+datsize[2])) 307 #print cxr,cyr 308 ndata[np.ix_(map(int,cxr),map(int,cyr),map(int,czr))] = data 309 return ndata
27 def pad_image(x, pad_amount, mode='reflect', constant=0.): 28 e = pad_amount 29 shape = list(x.shape) 30 shape[:2] += 2*e 31 if mode == 'constant': 32 x_padded = np.ones(shape, dtype=np.float32)*constant 33 x_padded[e:-e, e:-e] = x.copy() 34 else: 35 x_padded = np.zeros(shape, dtype=np.float32) 36 x_padded[e:-e, e:-e] = x.copy() 37 38 if mode == 'reflect': 39 x_padded[:e, e:-e] = np.flipud(x[:e, :]) # left edge 40 x_padded[-e:, e:-e] = np.flipud(x[-e:, :]) # right edge 41 x_padded[e:-e, :e] = np.fliplr(x[:, :e]) # top edge 42 x_padded[e:-e, -e:] = np.fliplr(x[:, -e:]) # bottom edge 43 x_padded[:e, :e] = np.fliplr(np.flipud(x[:e, :e])) # top-left corner 44 x_padded[-e:, :e] = np.fliplr(np.flipud(x[-e:, :e])) # top-right corner 45 x_padded[:e, -e:] = np.fliplr(np.flipud(x[:e, -e:])) # bottom-left corner 46 x_padded[-e:, -e:] = np.fliplr(np.flipud(x[-e:, -e:])) # bottom-right corner 47 elif mode == 'zero' or mode == 'constant': 48 pass 49 elif mode == 'nearest': 50 x_padded[:e, e:-e] = x[[0], :] # left edge 51 x_padded[-e:, e:-e] = x[[-1], :] # right edge 52 x_padded[e:-e, :e] = x[:, [0]] # top edge 53 x_padded[e:-e, -e:] = x[:, [-1]] # bottom edge 54 x_padded[:e, :e] = x[[0], [0]] # top-left corner 55 x_padded[-e:, :e] = x[[-1], [0]] # top-right corner 56 x_padded[:e, -e:] = x[[0], [-1]] # bottom-left corner 57 x_padded[-e:, -e:] = x[[-1], [-1]] # bottom-right corner 58 else: 59 raise ValueError("Unsupported padding mode \"{}\"".format(mode)) 60 return x_padded
60 def pad_by(image,r,dtype=None): 61 """Symmetrically pad the image by the given amount""" 62 if dtype is None: dtype = image.dtype 63 w,h = image.shape 64 result = zeros((w+2*r,h+2*r)) 65 result[r:(w+r),r:(h+r)] = image 66 return result
162 def add_padding(img, image_size=128, verbose=False, pad_value=None): 163 height, width = img.shape 164 if not pad_value: 165 pad_value = img[0][0] 166 if verbose: 167 print('original cropped image size:', img.shape) 168 169 # Adding padding of x axis - left, right 170 pad_x_width = (image_size - width) // 2 171 pad_x = np.full((height, pad_x_width), pad_value, dtype=np.float32) 172 img = np.concatenate((pad_x, img), axis=1) 173 img = np.concatenate((img, pad_x), axis=1) 174 175 width = img.shape[1] 176 177 # Adding padding of y axis - top, bottom 178 pad_y_height = (image_size - height) // 2 179 pad_y = np.full((pad_y_height, width), pad_value, dtype=np.float32) 180 img = np.concatenate((pad_y, img), axis=0) 181 img = np.concatenate((img, pad_y), axis=0) 182 183 # Match to original image size 184 width = img.shape[1] 185 if img.shape[0] % 2: 186 pad = np.full((1, width), pad_value, dtype=np.float32) 187 img = np.concatenate((pad, img), axis=0) 188 height = img.shape[0] 189 if img.shape[1] % 2: 190 pad = np.full((height, 1), pad_value, dtype=np.float32) 191 img = np.concatenate((pad, img), axis=1) 192 193 if verbose: 194 print('final image size:', img.shape) 195 196 return img