Every line of 'numpy read csv' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
37 def readcsv(filename, header=True): 38 return pd.read_csv(filename, header=None) if not header else pd.read_csv(filename)
41 def read_csv_file(file_name): 42 """ 43 Return patient ID and sinogram array produced by reading a RayStation sinogram 44 CSV file with the provided file name. 45 46 Files are produced by ExportTomoSinogram.py, Brandon Merz, 47 RaySearch customer forum, 1/18/2018. 48 49 Format: 50 First row contains demographics. Subsequent rows correspond to couch positions. 51 Leaf-open time range from zero to one. 52 "Patient name: ANONYMOUS^PATIENT, ID: 00000",,,,,,,,, 53 ,0,0,0,0,0,0,0,0,0,0,0,0,0.39123373,0.366435635 ... 54 """ 55 56 with open(file_name, 'r') as csvfile: 57 58 pat_name, pat_num = csvfile.readline().split('ID:') 59 pat_name = pat_name.replace('Patient name:', '') 60 61 pat_name_last, pat_name_first = pat_name.split('^') 62 pat_name_last = ''.join([c for c in pat_name_last if c in LETTERS]) 63 pat_name_first = ''.join([c for c in pat_name_first if c in LETTERS]) 64 pat_num = ''.join([c for c in pat_num if c in DIGITS]) 65 66 document_id = pat_num + ' - ' + pat_name_last + ', ' + pat_name_first 67 reader = csv.reader(csvfile, delimiter=',') 68 array = np.asarray([line[1:] for line in reader]).astype(float) 69 70 return document_id, array
11 def read_csv(array, filename): 12 with open(filename, 'rb') as input_file: 13 foo = csv.reader(input_file) 14 for row in foo: 15 array.append(row) 16 return array
396 def _load_raw_rates(self, file_path, sep): 397 """In MovieLens, the rates have the following format 398 399 ml-100k 400 user id \t movie id \t rating \t timestamp 401 402 ml-1m/10m 403 UserID::MovieID::Rating::Timestamp 404 405 timestamp is unix timestamp and can be converted by pd.to_datetime(X, unit='s') 406 407 Parameters 408 ---------- 409 file_path : str 410 411 Returns 412 ------- 413 rating_info : pd.DataFrame 414 """ 415 rating_info = pd.read_csv( 416 file_path, sep=sep, header=None, 417 names=['user_id', 'movie_id', 'rating', 'timestamp'], 418 dtype={'user_id': np.int32, 'movie_id' : np.int32, 419 'ratings': np.float32, 'timestamp': np.int64}, engine='python') 420 return rating_info