Every line of 'numpy repeat' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
354 def repeat(a, repeats, axis=None): 355 """ 356 Repeat elements of an array. 357 358 Parameters 359 ---------- 360 a : array_like 361 Input array. 362 repeats : int or array of ints 363 The number of repetitions for each element. `repeats` is broadcasted 364 to fit the shape of the given axis. 365 axis : int, optional 366 The axis along which to repeat values. By default, use the 367 flattened input array, and return a flat output array. 368 369 Returns 370 ------- 371 repeated_array : ndarray 372 Output array which has the same shape as `a`, except along 373 the given axis. 374 375 See Also 376 -------- 377 tile : Tile an array. 378 379 Examples 380 -------- 381 >>> x = np.array([[1,2],[3,4]]) 382 >>> np.repeat(x, 2) 383 array([1, 1, 2, 2, 3, 3, 4, 4]) 384 >>> np.repeat(x, 3, axis=1) 385 array([[1, 1, 1, 2, 2, 2], 386 [3, 3, 3, 4, 4, 4]]) 387 >>> np.repeat(x, [1, 2], axis=0) 388 array([[1, 2], 389 [3, 4], 390 [3, 4]]) 391 392 """ 393 try: 394 repeat = a.repeat 395 except AttributeError: 396 return _wrapit(a, 'repeat', repeats, axis) 397 return repeat(repeats, axis)
382 def repeat(a, repeats, axis=None): 383 """ 384 Repeat elements of an array. 385 386 Parameters 387 ---------- 388 a : array_like 389 Input array. 390 repeats : int or array of ints 391 The number of repetitions for each element. `repeats` is broadcasted 392 to fit the shape of the given axis. 393 axis : int, optional 394 The axis along which to repeat values. By default, use the 395 flattened input array, and return a flat output array. 396 397 Returns 398 ------- 399 repeated_array : ndarray 400 Output array which has the same shape as `a`, except along 401 the given axis. 402 403 See Also 404 -------- 405 tile : Tile an array. 406 407 Examples 408 -------- 409 >>> np.repeat(3, 4) 410 array([3, 3, 3, 3]) 411 >>> x = np.array([[1,2],[3,4]]) 412 >>> np.repeat(x, 2) 413 array([1, 1, 2, 2, 3, 3, 4, 4]) 414 >>> np.repeat(x, 3, axis=1) 415 array([[1, 1, 1, 2, 2, 2], 416 [3, 3, 3, 4, 4, 4]]) 417 >>> np.repeat(x, [1, 2], axis=0) 418 array([[1, 2], 419 [3, 4], 420 [3, 4]]) 421 422 """ 423 return _wrapfunc(a, 'repeat', repeats, axis=axis)
145 def repeat(input, repeats, dim): 146 return np.repeat(input, repeats, axis=dim)