Every line of 'numpy rolling mean' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
81 def mean(self): 82 def mean(scol): 83 return F.when( 84 F.row_number().over(self._unbounded_window) >= self._min_periods, 85 F.mean(scol).over(self._window) 86 ).otherwise(F.lit(None)) 87 88 return self._apply_as_series_or_frame(mean)
273 def rolling_mean_by_h(x, h, w, name): 274 """Compute a rolling mean of x, after first aggregating by h. 275 276 Right-aligned. Computes a single mean for each unique value of h. Each 277 mean is over at least w samples. 278 279 Parameters 280 ---------- 281 x: Array. 282 h: Array of horizon for each value in x. 283 w: Integer window size (number of elements). 284 name: Name for metric in result dataframe 285 286 Returns 287 ------- 288 Dataframe with columns horizon and name, the rolling mean of x. 289 """ 290 # Aggregate over h 291 df = pd.DataFrame({'x': x, 'h': h}) 292 df2 = ( 293 df.groupby('h').agg(['mean', 'count']).reset_index().sort_values('h') 294 ) 295 xm = df2['x']['mean'].values 296 ns = df2['x']['count'].values 297 hs = df2['h'].values 298 299 res_h = [] 300 res_x = [] 301 # Start from the right and work backwards 302 i = len(hs) - 1 303 while i >= 0: 304 # Construct a mean of at least w samples. 305 n = int(ns[i]) 306 xbar = float(xm[i]) 307 j = i - 1 308 while ((n < w) and j >= 0): 309 # Include points from the previous horizon. All of them if still 310 # less than w, otherwise just enough to get to w. 311 n2 = min(w - n, ns[j]) 312 xbar = xbar * (n / (n + n2)) + xm[j] * (n2 / (n + n2)) 313 n += n2 314 j -= 1 315 if n < w: 316 # Ran out of horizons before enough points. 317 break 318 res_h.append(hs[i]) 319 res_x.append(xbar) 320 i -= 1 321 res_h.reverse() 322 res_x.reverse() 323 return pd.DataFrame({'horizon': res_h, name: res_x})
85 def sma(data, span=100): 86 """Computes and returns the simple moving average. 87 88 Note: the moving average is computed on all columns. 89 90 :Input: 91 :data: pandas.DataFrame with stock prices in columns 92 :span: int (defaul: 100), number of days/values over which 93 the average is computed 94 95 :Output: 96 :sma: pandas.DataFrame of simple moving average 97 """ 98 return data.rolling(window=span, center=False).mean()
14 def period_mean(data, freq): 15 ''' 16 Method to calculate mean for each frequency 17 ''' 18 return np.array( 19 [np.mean(data[i::freq]) for i in range(freq)])
2155 def hpat_pandas_series_mean_impl(self, axis=None, skipna=None, level=None, numeric_only=None): 2156 if skipna is None: 2157 skipna = True 2158 2159 if skipna: 2160 return numpy.nanmean(self._data) 2161 2162 return self._data.mean()
314 def __mean(xarr): 315 """mean = x.sum() / len(x)""" #interface is [lb,ub]; not lb,ub 316 from numpy import mean 317 return mean(xarr)
174 @rabbit 175 def mean(self): 176 """Finds The Arithmetic Mean.""" 177 return sum(self.units)/float(len(self))