Every line of 'object to datetime pandas' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
302 def to_pandas(self) -> None: 303 '''Return a Pandas Index. 304 ''' 305 raise NotImplementedError('Pandas does not support a year month type, and it is ambiguous if a date proxy should be the first of the month or the last of the month.')
553 def to_datetime(self, dayfirst=False): 554 """ 555 DEPRECATED: use :meth:`to_timestamp` instead. 556 557 Cast to DatetimeIndex. 558 """ 559 warnings.warn("to_datetime is deprecated. Use self.to_timestamp(...)", 560 FutureWarning, stacklevel=2) 561 return self.to_timestamp()
148 def localize_datetime(x): 149 if pd.isnull(x) or isinstance(x, pd.tslib.NaTType): 150 return None 151 utz_tz = pytz.timezone('UTC') 152 local_tz = pytz.timezone(utc_to_tz) 153 d = utz_tz.localize(x) 154 d = d.astimezone(local_tz) 155 # make naive. 156 return d.replace(tzinfo=None)
30 def converter(df: DataFrame) -> Series: 31 return df[field_name]
45 def _is_datetime(s): 46 if is_datetime64_any_dtype(s): 47 return True 48 try: 49 if is_object_dtype(s): 50 pd.to_datetime(s, infer_datetime_format=True) 51 return True 52 except Exception: # pylint: disable=broad-except 53 pass 54 return False
80 def to_datetime(obj): 81 """Convert `obj` into a `datetime` object. 82 83 * If `obj` is a `datetime` object it is returned untouched. 84 * if `obj` is None the current time in UTC is used. 85 * if `obj` is a `date` object it will be converted into a `datetime` object. 86 * if `obj` is a number it is interpreted as a timestamp. 87 88 Note: All values are localized to the users timezone. 89 Never use this for calculations, only for presentation! 90 """ 91 if obj is None: 92 dt = datetime.utcnow() 93 elif isinstance(obj, datetime): 94 dt = obj 95 elif isinstance(obj, date): 96 dt = datetime(obj.year, obj.month, obj.day) 97 elif isinstance(obj, (int, long, float)): 98 dt = datetime.fromtimestamp(obj) 99 else: 100 raise TypeError('expecting datetime, date int, long, float, or None; ' 101 'got %s' % type(obj)) 102 return rebase_to_timezone(dt)
18 @classmethod 19 def to_datetime(cls, obj, end_of_year=False): 20 """Create datetime object from the inputted object.""" 21 if isinstance(obj, bool): 22 return obj 23 if isinstance(obj, datetime.datetime): 24 return obj 25 if isinstance(obj, int): 26 if end_of_year: 27 month, day = 12, 31 28 else: 29 month, day = 1, 1 30 return datetime.datetime(obj, month, day) 31 if isinstance(obj, str): 32 return cls.str_to_datetime(obj) 33 try: 34 return datetime.datetime(obj) 35 except: 36 raise
84 def as_timestamp(obj): 85 if isinstance(obj, Timestamp): 86 return obj 87 try: 88 return Timestamp(obj) 89 except (OutOfBoundsDatetime): 90 pass 91 return obj
33 def datesarray_to_datetimearray(dates: np.ndarray) -> np.ndarray: 34 """ 35 Convert an pandas-array of timestamps into 36 An numpy-array of datetimes 37 :return: numpy-array of datetime 38 """ 39 return dates.dt.to_pydatetime()
322 def to_timestamp(self, freq=None, how='start'): 323 """ 324 Cast to DatetimeArray/Index. 325 326 Parameters 327 ---------- 328 freq : string or DateOffset, optional 329 Target frequency. The default is 'D' for week or longer, 330 'S' otherwise 331 how : {'s', 'e', 'start', 'end'} 332 333 Returns 334 ------- 335 DatetimeArray/Index 336 """ 337 from pandas.core.arrays import DatetimeArray 338 339 how = libperiod._validate_end_alias(how) 340 341 end = how == 'E' 342 if end: 343 if freq == 'B': 344 # roll forward to ensure we land on B date 345 adjust = Timedelta(1, 'D') - Timedelta(1, 'ns') 346 return self.to_timestamp(how='start') + adjust 347 else: 348 adjust = Timedelta(1, 'ns') 349 return (self + self.freq).to_timestamp(how='start') - adjust 350 351 if freq is None: 352 base, mult = libfrequencies.get_freq_code(self.freq) 353 freq = libfrequencies.get_to_timestamp_base(base) 354 else: 355 freq = Period._maybe_convert_freq(freq) 356 357 base, mult = libfrequencies.get_freq_code(freq) 358 new_data = self.asfreq(freq, how=how) 359 360 new_data = libperiod.periodarr_to_dt64arr(new_data.asi8, base) 361 return DatetimeArray._from_sequence(new_data, freq='infer')