Every line of 'opencv resize image' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
26 def resize_image(image,w,h): 27 image=cv2.resize(image,(w,h)) 28 cv2.imwrite(Folder_name+"/Resize-"+str(w)+"*"+str(h)+Extension, image)
141 def resize_image(self, img, scale): 142 """ 143 resize image and transform dimention to [batchsize, channel, height, width] 144 Parameters: 145 ---------- 146 img: numpy array , height x width x channel,input image, channels in BGR order here 147 scale: float number, scale factor of resize operation 148 Returns: 149 ------- 150 transformed image tensor , 1 x channel x height x width 151 """ 152 height, width, channels = img.shape 153 new_height = int(height * scale) # resized new height 154 new_width = int(width * scale) # resized new width 155 new_dim = (new_width, new_height) 156 img_resized = cv2.resize(img, new_dim, interpolation=cv2.INTER_LINEAR) # resized image 157 158 return img_resized
38 def image_resize(image, width = None, height = None, inter = cv2.INTER_AREA): 39 # ref: https://stackoverflow.com/questions/44650888/resize-an-image-without-distortion-opencv 40 41 # initialize the dimensions of the image to be resized and 42 # grab the image size 43 dim = None 44 (h, w) = image.shape[:2] 45 46 # if both the width and height are None, then return the 47 # original image 48 if width is None and height is None: 49 return image 50 51 # check to see if the width is None 52 if width is None: 53 # calculate the ratio of the height and construct the 54 # dimensions 55 r = height / float(h) 56 dim = (int(w * r), height) 57 58 # otherwise, the height is None 59 else: 60 # calculate the ratio of the width and construct the 61 # dimensions 62 r = width / float(w) 63 dim = (width, int(h * r)) 64 65 # resize the image 66 resized = cv2.resize(image, dim, interpolation = inter) 67 68 # return the resized image 69 return resized
48 def scale_image(self, image, scale): 49 50 if self.settings.opencv_or_pil == 'PIL': 51 ow, oh = image.size 52 nw = ow * scale 53 nh = oh * scale 54 return image.resize((int(nw), int(nh)), Image.ANTIALIAS) 55 56 else: 57 oh, ow, channels = image.shape 58 59 nw = ow * scale 60 nh = oh * scale 61 62 # PERF return cv2.resize(image, (int(nw), int(nh)), interpolation=cv2.INTER_NEAREST) 63 return cv2.resize(image, (int(nw), int(nh)), interpolation=cv2.INTER_CUBIC)
100 def resize(self, width, height): 101 thumbnail = cv.CreateImage( 102 (int(round(width, 0)), int(round(height, 0))), 103 self.image_depth, 104 self.image_channels 105 ) 106 cv.Resize(self.image, thumbnail, cv.CV_INTER_AREA) 107 self.image = thumbnail
103 def __resize_image(self, image): 104 self.input_height = image.shape[0] 105 if self.height is not None: 106 zoom = self.height / float(image.shape[0]) 107 width = int(float(image.shape[1]) * zoom) + 1 108 image = cv2.resize(image, (width, self.height), interpolation=cv2.INTER_CUBIC) 109 return image
27 def resizeimg(img, width, height): 28 #img = cv2.imread(path) 29 #img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 30 img = cv2.resize(img, (width,height)) 31 32 img = img.astype(float) 33 img = img * (2.0 / 255.0) - 1.0 34 return img
29 def imresize(img, size, return_scale=False, interpolation='bilinear'): 30 """Resize image to a given size. 31 32 Args: 33 img (ndarray): The input image. 34 size (tuple): Target (w, h). 35 return_scale (bool): Whether to return `w_scale` and `h_scale`. 36 interpolation (str): Interpolation method, accepted values are 37 "nearest", "bilinear", "bicubic", "area", "lanczos". 38 39 Returns: 40 tuple or ndarray: (`resized_img`, `w_scale`, `h_scale`) or 41 `resized_img`. 42 """ 43 h, w = img.shape[:2] 44 resized_img = cv2.resize( 45 img, size, interpolation=interp_codes[interpolation]) 46 if not return_scale: 47 return resized_img 48 else: 49 w_scale = size[0] / w 50 h_scale = size[1] / h 51 return resized_img, w_scale, h_scale
676 def apply_resize(image, resize_param): 677 assert isinstance(resize_param.interp_mode, (list, tuple)) 678 679 interp_mode = cv2.INTER_LINEAR 680 num_interp_mode = len(resize_param.interp_mode) 681 if num_interp_mode > 0: 682 probs = [1. / num_interp_mode] * num_interp_mode 683 cumulative = np.cumsum(probs) 684 val = random.uniform(0, cumulative[-1]) 685 prob_num = bisect.bisect_left(cumulative, val) 686 interp_mode = resize_param.interp_mode[prob_num] 687 688 if resize_param.resize_mode == ResizeParameter.WARP: 689 return cv2.resize(image, dsize=(resize_param.width, resize_param.height), interpolation=interp_mode) 690 elif resize_param.resize_mode == ResizeParameter.FIT_LARGE_SIZE_AND_PAD: 691 return aspect_keeping_resize_and_pad(image, resize_param.width, resize_param.height, resize_param.pad_mode, 692 resize_param.pad_val, interp_mode) 693 elif resize_param.resize_mode == ResizeParameter.FIT_SMALL_SIZE: 694 return aspect_keeping_resize_by_small(image, resize_param.width, resize_param.height, interp_mode) 695 raise Exception()
7 def resize_img(img, scale_factor): 8 new_size = (np.floor(np.array(img.shape[0:2]) * scale_factor)).astype(int) 9 new_img = cv2.resize(img, (new_size[1], new_size[0])) 10 # This is scale factor of [height, width] i.e. [y, x] 11 actual_factor = [ 12 new_size[0] / float(img.shape[0]), new_size[1] / float(img.shape[1]) 13 ] 14 return new_img, actual_factor