How to use 'pandas add column of zeros' in Python

Every line of 'pandas add column of zeros' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.

All examples are scanned by Snyk Code

By copying the Snyk Code Snippets you agree to
234def add_zeros(df, ctx):
235 """ Add values of zero where we believe appropriate."""
236 cellsize = ctx["sz"] * 1000.0
237 newrows = []
238 # loop over the grid looking for spots to add a zero
239 for y in np.arange(ctx["bnds2163"][1], ctx["bnds2163"][3], cellsize):
240 for x in np.arange(ctx["bnds2163"][0], ctx["bnds2163"][2], cellsize):
241 # search a 2x radius for any obs
242 poly = Polygon(
243 [
244 [x - cellsize, y - cellsize],
245 [x - cellsize, y + cellsize],
246 [x + cellsize, y + cellsize],
247 [x + cellsize, y - cellsize],
248 ]
249 )
250 df2 = df[df["geo"].within(poly)]
251 if df2.empty:
252 # Add a zero at this "point"
253 (lon, lat) = T2163_4326.transform(x, y)
254 if ctx["z"] != "no":
255 newrows.append(
256 {
257 "geo": Point(x, y),
258 "lon": lon,
259 "lat": lat,
260 "val": 0,
261 "nwsli": "Z%s" % (len(newrows) + 1,),
262 USEME: True,
263 "plotme": False,
264 "state": "Z",
265 }
266 )
267 continue
268 # For this grid cell, remove any values 20% of the max
269 maxval = df.at[df2.index[0], "val"]
270 df.loc[df2[df2["val"] >= (maxval * 0.2)].index, USEME] = True
271 df.loc[df2[df2["val"] >= (maxval * 0.2)].index, "plotme"] = True
272
273 return pd.concat(
274 [df, GeoDataFrame(newrows, geometry="geo")],
275 ignore_index=True,
276 sort=False,
277 )
14def add_column_numpy_array(array, new_col):
15 placeholder = np.ones(array.shape[0])[:, np.newaxis]
16 result = np.hstack((array, placeholder))
17
18 if isinstance(new_col, np.ndarray):
19 assert array.shape[0] == new_col.shape[0], "input array row counts \
20 must be the same. \
21 Expected: {0}\
22 Actual: {1}".format(array.shape[0],
23 new_col.shape[0])
24 assert len(new_col.shape) <= 2, "new column must be 1D or 2D"
25
26 if len(new_col.shape) == 1:
27 new_col = new_col[:, np.newaxis]
28 return np.hstack((array, new_col))
29 elif isinstance(new_col, list):
30 assert len(new_col) == array.shape[0], "input array row counts \
31 must be the same. \
32 Expected: {0}\
33 Actual: {1}".format(len(array),
34 len(new_col))
35 new_col = np.array(new_col)
36 assert len(new_col.shape) == 1, "list elements cannot be iterable"
37 new_col = new_col[:, np.newaxis]
38 return np.hstack((array, new_col))
39 else:
40 placeholder = np.ones(array.shape[0])[:, np.newaxis]
41 result = np.hstack((array, placeholder))
42 result[:, -1] = new_col
43 return result

Related snippets