Every line of 'pandas convert column to datetime' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
45 def _is_datetime(s): 46 if is_datetime64_any_dtype(s): 47 return True 48 try: 49 if is_object_dtype(s): 50 pd.to_datetime(s, infer_datetime_format=True) 51 return True 52 except Exception: # pylint: disable=broad-except 53 pass 54 return False
30 def converter(df: DataFrame) -> Series: 31 return df[field_name]
552 def detect_datetime_columns(data_frame): 553 """ 554 Given a data frame traverse the columns and those that have type "string" 555 try to see if it is of type datetime. If so, apply the translation. 556 :param data_frame: Pandas dataframe to detect datetime columns 557 :return: 558 """ 559 # Strip white space from all string columns and try to convert to 560 # datetime just in case 561 for x in list(data_frame.columns): 562 if data_frame[x].dtype.name == 'object': 563 # Column is a string! 564 data_frame[x] = data_frame[x].str.strip() 565 566 # Try the datetime conversion 567 try: 568 series = pd.to_datetime(data_frame[x], 569 infer_datetime_format=True) 570 # Datetime conversion worked! Update the data_frame 571 data_frame[x] = series 572 except ValueError: 573 pass 574 return data_frame
553 def to_datetime(self, dayfirst=False): 554 """ 555 DEPRECATED: use :meth:`to_timestamp` instead. 556 557 Cast to DatetimeIndex. 558 """ 559 warnings.warn("to_datetime is deprecated. Use self.to_timestamp(...)", 560 FutureWarning, stacklevel=2) 561 return self.to_timestamp()
267 def _convert_datetime_type(self, column): 268 """The Avro timestamp logical type is used to represent 269 MySQL datetime type, and it chooses timestamp-millis or 270 timestamp-micros depending on the fsp value. 271 """ 272 metadata = self._get_primary_key_metadata(column.primary_key_order) 273 metadata[AvroMetaDataKeys.DATETIME] = True 274 fsp = column.type.fsp 275 metadata.update(self._get_fsp_metadata(fsp)) 276 277 return self._builder.create_string(), metadata
148 def localize_datetime(x): 149 if pd.isnull(x) or isinstance(x, pd.tslib.NaTType): 150 return None 151 utz_tz = pytz.timezone('UTC') 152 local_tz = pytz.timezone(utc_to_tz) 153 d = utz_tz.localize(x) 154 d = d.astimezone(local_tz) 155 # make naive. 156 return d.replace(tzinfo=None)
2 def convert_columns_dtype(df, old_dtype, new_dtype): 3 """ 4 Parameters 5 ---------- 6 df: pandas.DataFrame 7 8 old_dtype: numpy dtype 9 10 new_dtype: numpy dtype 11 """ 12 changed = [] 13 for column in df.columns: 14 if df[column].dtype == old_dtype: 15 df[column] = df[column].astype(new_dtype) 16 changed.append(column) 17 18 return changed
302 def to_pandas(self) -> None: 303 '''Return a Pandas Index. 304 ''' 305 raise NotImplementedError('Pandas does not support a year month type, and it is ambiguous if a date proxy should be the first of the month or the last of the month.')
653 def set_index_post_series(df, index_name, drop, column_dtype): 654 df2 = df.drop("_partitions", axis=1).set_index("_index", drop=True) 655 df2.index.name = index_name 656 df2.columns = df2.columns.astype(column_dtype) 657 return df2
43 def convert_input(X, columns=None, deep=False): 44 """ 45 Unite data into a DataFrame. 46 Objects that do not contain column names take the names from the argument. 47 Optionally perform deep copy of the data. 48 """ 49 if not isinstance(X, pd.DataFrame): 50 if isinstance(X, pd.Series): 51 X = pd.DataFrame(X, copy=deep) 52 else: 53 if columns is not None and np.size(X,1) != len(columns): 54 raise ValueError('The count of the column names does not correspond to the count of the columns') 55 if isinstance(X, list): 56 X = pd.DataFrame(X, columns=columns, copy=deep) # lists are always copied, but for consistency, we still pass the argument 57 elif isinstance(X, (np.generic, np.ndarray)): 58 X = pd.DataFrame(X, columns=columns, copy=deep) 59 elif isinstance(X, csr_matrix): 60 X = pd.DataFrame(X.todense(), columns=columns, copy=deep) 61 else: 62 raise ValueError('Unexpected input type: %s' % (str(type(X)))) 63 64 X = X.apply(lambda x: pd.to_numeric(x, errors='ignore')) 65 elif deep: 66 X = X.copy(deep=True) 67 68 return X