Every line of 'pandas dataframe column names to lower' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
420 def df_column_types_rename(df): 421 result = [df[x].dtype.name for x in list(df.columns)] 422 result[:] = [x if x != 'object' else 'string' for x in result] 423 result[:] = [x if x != 'int64' else 'integer' for x in result] 424 result[:] = [x if x != 'float64' else 'double' for x in result] 425 result[:] = [x if x != 'bool' else 'boolean' for x in result] 426 427 return result
684 def upper(self, col): 685 return self._str_method(str.upper, col)
658 def isupper(self, col): 659 return self._str_method(str.isupper, col)
62 def matchColumnNames(df): 63 return df.rename( 64 columns={ 65 "id": "vehicle_id", 66 "heading": "direction", 67 "secsSinceReport": "seconds_since_report", 68 "lat": "latitude", 69 "lon": "longitude", 70 "routeTag": "line" 71 } 72 )
80 def _clean_columns(df, keep_colnames): 81 new_colnames = [] 82 for i,colname in enumerate(df.columns): 83 if colname not in keep_colnames: 84 new_colnames.append(i) 85 else: 86 new_colnames.append(colname) 87 return new_colnames
39 def _drop_col(self, df): 40 ''' 41 Drops last column, which was added in the parsing procedure due to a 42 trailing white space for each sample in the text file 43 Arguments: 44 df: pandas dataframe 45 Return: 46 df: original df with last column dropped 47 ''' 48 return df.drop(df.columns[-1], axis=1)