Every line of 'pandas fillna with another column' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
114 def panel_fillna(panel, type="bfill"): 115 """ 116 fill nan along the 3rd axis 117 :param panel: the panel to be filled 118 :param type: bfill or ffill 119 """ 120 frames = {} 121 for item in panel.items: 122 if type == "both": 123 frames[item] = panel.loc[item].fillna(axis=1, method="bfill").\ 124 fillna(axis=1, method="ffill") 125 else: 126 frames[item] = panel.loc[item].fillna(axis=1, method=type) 127 return pd.Panel(frames)
19 def fill_missing_values(df_data): 20 """Fill missing values in data frame, in place.""" 21 df_data.fillna(method="ffill", inplace="True") 22 df_data.fillna(method='bfill', inplace="True")
39 def _drop_col(self, df): 40 ''' 41 Drops last column, which was added in the parsing procedure due to a 42 trailing white space for each sample in the text file 43 Arguments: 44 df: pandas dataframe 45 Return: 46 df: original df with last column dropped 47 ''' 48 return df.drop(df.columns[-1], axis=1)
3169 def hpat_pandas_series_dropna_impl(self, axis=0, inplace=False): 3170 # generate Series index if needed by using SeriesType.index (i.e. not self._index) 3171 na_data_arr = hpat.hiframes.api.get_nan_mask(self._data) 3172 data = self._data[~na_data_arr] 3173 index = self.index[~na_data_arr] 3174 return pandas.Series(data, index, self._name)
2413 def combine_first(self, other): 2414 """Combine two Datasets, default to data_vars of self. 2415 2416 The new coordinates follow the normal broadcasting and alignment rules 2417 of ``join='outer'``. Vacant cells in the expanded coordinates are 2418 filled with np.nan. 2419 2420 Parameters 2421 ---------- 2422 other : DataArray 2423 Used to fill all matching missing values in this array. 2424 2425 Returns 2426 ------- 2427 DataArray 2428 """ 2429 out = ops.fillna(self, other, join="outer", dataset_join="outer") 2430 return out
38 def fill_empty(df: pd.DataFrame) -> pd.DataFrame: 39 """Fill the gaps in the 'original' column with values from 'index' 40 Args: 41 df: 42 Returns: 43 """ 44 index = df["original"].isnull() 45 df.loc[index, "original"] = df.loc[index, "index"] 46 47 return df
580 def sdc_fillna_int_impl(self, inplace=False, value=None): 581 return copy(self)
332 def dropcols(df, start=None, end=None): 333 """Drop columns that contain NaN within [start, end] inclusive. 334 335 A wrapper around DataFrame.dropna() that builds an easier *subset* 336 syntax for tseries-indexed DataFrames. 337 338 Parameters 339 ---------- 340 df : DataFrame 341 start : str or datetime, default None 342 start cutoff date, inclusive 343 end : str or datetime, default None 344 end cutoff date, inclusive 345 346 Example 347 ------- 348 df = DataFrame(np.random.randn(10,3), 349 index=pd.date_range('2017', periods=10)) 350 351 # Drop in some NaN 352 df.set_value('2017-01-04', 0, np.nan) 353 df.set_value('2017-01-02', 2, np.nan) 354 df.loc['2017-01-05':, 1] = np.nan 355 356 # only col2 will be kept--its NaN value falls before `start` 357 print(dropcols(df, start='2017-01-03')) 358 2 359 2017-01-01 0.12939 360 2017-01-02 NaN 361 2017-01-03 0.16596 362 2017-01-04 1.06442 363 2017-01-05 -1.87040 364 2017-01-06 -0.17160 365 2017-01-07 0.94588 366 2017-01-08 1.49246 367 2017-01-09 0.02042 368 2017-01-10 0.75094 369 370 """ 371 372 if isinstance(df, Series): 373 raise ValueError("func only applies to `pd.DataFrame`") 374 if start is None: 375 start = df.index[0] 376 if end is None: 377 end = df.index[-1] 378 subset = df.index[(df.index >= start) & (df.index <= end)] 379 return df.dropna(axis=1, subset=subset)
29 def _concat(df, type): 30 if df is None: 31 df = pd.DataFrame(_object_blocks[type]) 32 else: 33 _df = pd.DataFrame(_object_blocks[type]) 34 df = pd.concat([df, _df], sort=True) 35 return df
813 def merge(old_cols, new_cols): 814 return old_cols + new_cols