Every line of 'pandas hist title' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
88 def plot_hist(axes, data, xlabel=None, log=False, avg=True, median=True, bins=None, **kwargs): 89 time_max = max(data) 90 time_min = min(data) 91 time_avg = np.average(data) 92 time_median = np.median(data) 93 if bins is None: 94 bins = time_max - time_min + 1 95 hist = axes.hist(data, bins=bins, log=log, **kwargs) 96 if avg: 97 axes.axvline(x=time_avg, alpha=0.7, linestyle="dotted", color="blue", label="avg = {}".format(time_avg)) 98 if median: 99 axes.axvline(x=time_median, alpha=0.7, linestyle="dotted", color="green", label="median = {}".format(time_median)) 100 axes.set_ylabel("count" + ("\n(log)" if log else "")) 101 axes.set_xlabel("time" if xlabel is None else xlabel) 102 axes.xaxis.set_major_locator(ticker.MaxNLocator()) 103 if avg or median: 104 axes.legend(loc="best") 105 return hist
95 def fig_hist(da, bins, title, condi=None, outside=(False, True), 96 colors=('#8ecbad', '#b3ffd9')): 97 density, edges = dens_hist(da, bins, outside) 98 99 if condi is None: 100 fig = draw_hist(edges, density) 101 else: 102 density2, edges2 = dens_hist(da[condi], bins, outside) 103 104 bar1 = go.Bar( 105 y=edges2, x=density2, orientation='h', 106 marker=dict(color='black', line=dict(color='black')) 107 ) 108 bar2 = go.Bar( 109 y=edges, x=density, orientation='h', 110 marker=dict( 111 color='rgba(0,0,0,0)', 112 line=dict(color='white', width=1) 113 ) 114 ) 115 fig = go.Figure(data=[bar1, bar2]) 116 117 density = density2 118 edges = edges2 119 120 format_hist(fig, bins, edges, density, title, outside, colors) 121 122 return fig
134 def compare_hist(hist, bins, like, x, figname, discrete=False): 135 """Plot and save a figure comparing the histogram with the 136 probability. 137 138 :Parameters: 139 - `samples`: random variables. 140 - `like`: probability values. 141 - `bins`: histogram bins. 142 - `x`: values at which like is computed. 143 - `figname`: Name of figure to save. 144 """ 145 ax = P.subplot(111) 146 width = 0.9*(bins[1]-bins[0]) 147 ax.bar(bins, hist, width) 148 P.setp(ax.patches, alpha=.5) 149 if discrete: 150 ax.plot(x, like, 'k', linestyle='steps') 151 else: 152 ax.plot(x, like, 'k') 153 P.savefig('figs/' + figname) 154 P.close()
113 def pandas_group_hist_plot(df, var, group, x_name, y_name, folder='figures', save=True): 114 plt.figure(figsize=(8, 5)) 115 g = sns.FacetGrid(df, hue=group, height=5, aspect=1) 116 g.map(sns.distplot, var) 117 g.add_legend() 118 plt.xlabel(x_name) 119 plt.ylabel(y_name) 120 plt.tight_layout() 121 if save: 122 plt.savefig("{0}/{1}_hist.pdf".format(folder, y_name), format="pdf") 123 else: 124 plt.show() 125 plt.close()