Every line of 'pandas lag function' code snippets is scanned for vulnerabilities by our powerful machine learning engine that combs millions of open source libraries, ensuring your Python code is secure.
384 def lag_plot(series, lag=1, ax=None, **kwds): 385 """ 386 Lag plot for time series. 387 388 Parameters 389 ---------- 390 series : Time series 391 lag : lag of the scatter plot, default 1 392 ax : Matplotlib axis object, optional 393 **kwds 394 Matplotlib scatter method keyword arguments. 395 396 Returns 397 ------- 398 class:`matplotlib.axis.Axes` 399 """ 400 plot_backend = _get_plot_backend("matplotlib") 401 return plot_backend.lag_plot(series=series, lag=lag, ax=ax, **kwds)
109 def add_lag_vars(df, lag=3): 110 new_df_dict = {} 111 for col_header in df.drop("Date", axis=1): 112 new_df_dict[col_header] = df[col_header] 113 for lag in range(1, lag + 1): 114 new_df_dict["%s_lag%d" % 115 (col_header, lag)] = df[col_header].shift(-lag) 116 117 new_df = pd.DataFrame(new_df_dict, index=df.index) 118 new_df["Date"] = df["Date"] 119 120 return new_df.dropna()
35 def add_lag(self, df): 36 """Adds the lag to the index of the dataframe""" 37 df.index = df.index.map(self.add_date_lag) 38 return df